Validity in Quasi-Experimental Designs to Determine Home Visiting Program Effectiveness

D R . M A R Y K A Y F A L C O N E R
OUNCE OF PREVENTION FUND OF FLORIDA
UNIVERSITY OF CENTRAL FLORIDA
Learning Objectives for this Session

1) Review threats to validity in evaluations of home visiting programs.

2) Become familiar with two statistical techniques used to minimize selection bias in quasi-experimental designs and how these statistical adjustments balance the treatment and control groups in a quasi-experiment to obtain less biased treatment estimates for a home visiting program.

3) Understand variations of propensity score use, including how they can be used to supplement RCTs that do not have equivalency across treatment and control groups.
Types of Validity

- **Statistical Conclusion Validity**
 - Addresses how well the cause and effect covary
 - Can we make reasonable inferences from the statistics?

- **Internal Validity**
 - Addresses whether the relationship between variables is causal

- **Construct Validity**
 - Addresses how well the operations represent constructs
 - Are we manipulating or measuring what we intended?

- **External Validity**
 - Addresses how well we can generalize from the specific operations of the study to broader constructs.
Threats to Validity

- **Statistical Conclusion Validity**
 - Low power, violating assumptions, fishing, unreliability of measure, restriction of range

- **Internal Validity**
 - Ambiguous temporal precedence, attrition, maturation, history, testing, selection

- **Construct Validity**
 - Reactivity to experimental situation, experimenter biases, treatment diffusion, construct confounding

- **External Validity**
 - Interactions of the causal treatment with: units, treatments, outcomes or settings
What are the most appropriate statistics to evaluate program outcomes?
- Statistics depend on the design
- Designs depend on research questions
- Examples
 - When samples are related, use a within-subject statistic.
 - When observations are related, use a mixed effects statistic.

Have we violated any statistical assumptions?
- Many researchers fail to check

Do we have enough data?
- Are the tests powerful enough to find effects?
- Is there a lot of missing data?
Internal Validity

- RCTs rule out many threats to internal validity, but they are not infallible.
 - They rule out selection and interactions with selection
 - They reduce the impact of other threats (maturation, history)
 - What happens to one group will likely happen to the other
 - They are still susceptible to attrition

- Can non-randomized groups be balanced?

- Designs without control groups may reduce threats to other types of validity, but increase threats to IV
 - Within-subjects designs increase power and reduce treatment diffusion, but increase testing, history and maturation.

- Model Fidelity
Construct Validity

- What is the purpose of the program?
 - Are we measuring the intended outcome?
- What data are available to measure the purpose?
 - Do groups include a reasonable counterfactual?
 - Do data sets include all relevant information?
- Are the available measures valid/reliable?
 - Measurement Fidelity
- Are we able to get valid responses?
 - Will participants be honest?
 - Will participants accurately recall past behavior?
External Validity

- **Representative Participants**
 - Can we obtain data from the population of interest?
 - Cultural orientation, racial diversity and language barriers

- **Stage of Program Replication**
 - Multiple Program Sites Operating
 - Statewide Program

- **Method of Observation**
 - Self-report vs. other report vs. observation

- **Settings**
 - Do results vary by region?
Analysis of Program Impacts

• Without Statistical Adjustments
 ○ Perceived “effects” may be due to pre-existing differences.
 ○ This may be used when biases are unobserved.

• With Covariate Adjustments
 ○ Known biases are measured and included in statistical models
 ○ E.g. ANCOVA, multiple regression, matched analyses

• With Propensity Scoring Adjustments
 ○ Similar to covariate adjustments with multiple covariates except the covariates are aggregated into a single covariate
 ○ Propensity score is the predicted probability that a unit will be assigned to a treatment condition.
 ○ Comparable to covariate adjustment, but uses fewer \(df \)
Covariate Adjustments

- Known biases need to be included in the model
 - What contributes to biases (i.e., motivation)
 - Measure these covariates
 - Will participants provide information?
 - Non-ignorable covariates are accounted for

- What are the basic steps?
 - Hardest part is obtaining measures of covariates
 - Measurement attrition, reactivity to experimental situation
 - All covariates are added to a statistical model
 - ANCOVA, MANCOVA, multiple regression
 - matched t-test, blocking with factorial ANOVA
Propensity Score Adjustments

- PSA is a type of covariate adjustment
 - It uses the same data as the previous adjustments
 - Analyses are the same, but use the propensity score as an aggregated covariate

- Computing the propensity score
 - Select covariates that are related to both outcome and selection
 - They don’t have to be significant at $p < .05$
 - Estimate the probability that each unit will be in the treatment group from all the covariates using logistic regression
 - Test the propensity scores for balance
 - Are they evenly distributed between groups (Rubin, 2001)
Healthy Families Florida

DETERMINATION OF PROGRAM EFFECTIVENESS USING A QUASI-EXPERIMENTAL DESIGN
Healthy Families Florida is based on the Healthy Families America Model which is a voluntary, long-term, home visiting program that serves families assessed as high risk for child abuse and neglect.

Outcome is Reduction in Child Abuse and Neglect

Evaluation used a quasi-experimental design

Began evaluation of HFF in FY 1998-99 (24 projects)

Ended the evaluation of HFF in FY 2003-2004 (38 projects)
Quasi-Experimental Design and Validity Concerns

- **Internal Validity** –
 - Selection bias suspected due to nonrandomized experimental design, but all participants in the evaluation were eligible for services based on the assessment and all participants volunteered to be in the program but were unable to be served due to “situational” capacity.

- **External Validity** -
 - Diverse program target group (culture, language, country of origin, type of community, and racial)
 - Program serving multiple communities with different resources and service networks

- **Construct Validity** -
 - No current self-report measure for outcome
 - State maltreatment records used as the contract performance measure
Quasi-Experimental Design

- Retrospective
- Multiple Comparison Groups
 - No Service (eligible for program; volunteered to participate; could not be served due to situational capacity)
 - Program Completers
 - High Fidelity (several criteria)
 - Low Service Dosage (< 3 months of services)
- Time Frame
 - Children up to 12 months of age (this analysis)
 - Children up to 24 months of age (this analysis)
 - Additional age groups in the original evaluation
Table 1: Number and Percentage of Study Participants by Group within each Group Comparison

<table>
<thead>
<tr>
<th>Group Comparisons</th>
<th>Total</th>
<th>Comparison Group</th>
<th>Treatment Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Service and Completers</td>
<td></td>
<td>No Services</td>
<td>Completers</td>
</tr>
<tr>
<td>Children up to 12 months of age</td>
<td>1651(100.0%)</td>
<td>876 (53.1%)</td>
<td>775(46.9%)</td>
</tr>
<tr>
<td>Children up to 24 months of age</td>
<td>1045(100.0%)</td>
<td>274(26.2%)</td>
<td>771(73.8%)</td>
</tr>
<tr>
<td>No Service and High Fidelity</td>
<td></td>
<td>No Services</td>
<td>High Fidelity</td>
</tr>
<tr>
<td>Children up to 12 months of age</td>
<td>1550 (100.0%)</td>
<td>876(56.5%)</td>
<td>674(43.5%)</td>
</tr>
<tr>
<td>Children up to 24 months of age</td>
<td>947(100.0%)</td>
<td>274(28.9%)</td>
<td>673(71.1%)</td>
</tr>
<tr>
<td>Low Dosage Service(< 3 months of services) and Completers</td>
<td></td>
<td>Low Dosage Service</td>
<td>Completers</td>
</tr>
<tr>
<td>Children up to 12 months of age</td>
<td>980 (100.0%)</td>
<td>205 (20.9%)</td>
<td>775 (79.1%)</td>
</tr>
<tr>
<td>Children up to 24 months of age</td>
<td>915(100.0%)</td>
<td>144(15.7%)</td>
<td>771(84.3%)</td>
</tr>
<tr>
<td>Low Dosage Service (< 3 months of services) and High Fidelity</td>
<td></td>
<td>Low Dosage Service</td>
<td>High Fidelity</td>
</tr>
<tr>
<td>Children up to 12 months of age</td>
<td>879 (100.0%)</td>
<td>205 (23.9%)</td>
<td>674 (76.7%)</td>
</tr>
<tr>
<td>Children up to 24 months of age</td>
<td>817(100.0%)</td>
<td>144(17.6%)</td>
<td>673(82.4%)</td>
</tr>
</tbody>
</table>
• Without Statistical Adjustments
 o Percentage of Children Maltreated in each Group
 o Computation of Effect Sizes
 o Binary Logistic Regression (Model 1)
 ▪ Dependent Variable is Occurrence of Maltreatment
 ▪ Comparison Group Membership
 ▪ Odds Ratio or Exp(B)
Table 2: Child Abuse and Neglect Unadjusted Effect Sizes for Group Comparisons
CAN is at least one report of child abuse or neglect that is verified or has some indicators.

<table>
<thead>
<tr>
<th>Target Child Subgroups</th>
<th>No Service Group</th>
<th>High Fidelity Group</th>
<th>Completers Group</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 12 months of age</td>
<td>N: 876</td>
<td># of CAN: 71</td>
<td>%: 0.0811</td>
<td>N: 674</td>
</tr>
<tr>
<td>Up to 24 months of age</td>
<td>N: 274</td>
<td># of CAN: 40</td>
<td>%: 0.1460</td>
<td>N: 673</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target Child Subgroups</th>
<th>No Service Group</th>
<th>Completers Group</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 12 months of age</td>
<td>N: 876</td>
<td># of CAN: 71</td>
<td>%: 0.0811</td>
</tr>
<tr>
<td>Up to 24 months of age</td>
<td>N: 274</td>
<td># of CAN: 40</td>
<td>%: 0.1460</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target Child Subgroups</th>
<th>Low Dosage Service Group</th>
<th>Completers Group</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 12 months of age</td>
<td>N: 205</td>
<td># of CAN: 25</td>
<td>%: 0.1220</td>
</tr>
<tr>
<td>Up to 24 months of age</td>
<td>N: 144</td>
<td># of CAN: 25</td>
<td>%: 0.1736</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target Child Subgroups</th>
<th>Low Dosage Service Group</th>
<th>High Fidelity Group</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 12 months of age</td>
<td>N: 205</td>
<td># of CAN: 25</td>
<td>%: 0.1220</td>
</tr>
<tr>
<td>Up to 24 months of age</td>
<td>N: 144</td>
<td># of CAN: 25</td>
<td>%: 0.1736</td>
</tr>
</tbody>
</table>
Steps in the Impact Analysis
Covariate Adjustments

- Covariate Adjustments with Binary Logistic Regression
 - Several Covariate Models (all include comparison group membership)
 - Model 2 (HFFAT score)
 - Model 3 (HFFAT score, primary participant age, race/ethnicity, married)
 - Model 4 (HFFAT score, primary participant age, race/ethnicity, married, less than high school, number of children at intake)
 - Model 5 (HFFAT score, primary participant age, race/ethnicity, married, less than high school, number of children at intake, employed)
 - Model 6 (HFFAT score, primary participant age, race/ethnicity, married, less than high school, number of children at intake, employed, history of substance abuse during pregnancy, smoking during pregnancy)
Table 4: No Service Group and Completers Group Comparison
Odds Ratios for Child Abuse and Neglect in No Service Group
by Model and Age of Child
Notes: *** p < .001; ** p < .01; * p < .05; N (Number of children abused or neglected)

<table>
<thead>
<tr>
<th>Subgroup based on Age of Child</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 12 months</td>
<td>N=1651 (86)</td>
<td>N=1462 (82)</td>
<td>N=1436 (82)</td>
<td>N=1430 (82)</td>
</tr>
<tr>
<td>Exp(B)</td>
<td>4.469***</td>
<td>5.985***</td>
<td>5.298***</td>
<td>5.563***</td>
</tr>
<tr>
<td>CI (95%)</td>
<td>2.538-7.868</td>
<td>3.080-11.628</td>
<td>2.707-10.371</td>
<td>2.830-10.934</td>
</tr>
<tr>
<td>Up to 24 months</td>
<td>N=1045 (74)</td>
<td>N=866 (63)</td>
<td>N=841 (63)</td>
<td>N=835 (63)</td>
</tr>
<tr>
<td>Exp(B)</td>
<td>3.705***</td>
<td>3.998***</td>
<td>3.574***</td>
<td>3.739***</td>
</tr>
<tr>
<td>CI (95%)</td>
<td>2.292-5.990</td>
<td>2.333-6.853</td>
<td>2.058-6.207</td>
<td>2.125-6.577</td>
</tr>
</tbody>
</table>
Table 5: No Service Group and High Fidelity Group Comparison
Odds Ratios for Child Abuse and Neglect in No Service Group
by Model and Age of Child
Notes: ***p < .001; ** p < .01; * p < .05; N (Number of children abused or neglected)

<table>
<thead>
<tr>
<th>Subgroup based on Age of Child</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 12 months</td>
<td>N=1550 (105)</td>
<td>N=1519 (104)</td>
<td>N=1491(102)</td>
<td>N=1488 (102)</td>
</tr>
<tr>
<td>Exp(B)</td>
<td>1.660*</td>
<td>2.088***</td>
<td>2.092**</td>
<td>2.223***</td>
</tr>
<tr>
<td>CI (95%)</td>
<td>1.089-2.531</td>
<td>1.342-3.247</td>
<td>1.324-3.306</td>
<td>1.391-3.553</td>
</tr>
<tr>
<td>Up to 24 months</td>
<td>N=947 (102)</td>
<td>N=926 (97)</td>
<td>N=898 (93)</td>
<td>N=895 (93)</td>
</tr>
<tr>
<td>Exp(B)</td>
<td>1.685*</td>
<td>1.845**</td>
<td>1.907**</td>
<td>1.925**</td>
</tr>
<tr>
<td>CI (95%)</td>
<td>1.101-2.577</td>
<td>1.178-2.891</td>
<td>1.196-3.040</td>
<td>1.198-3.093</td>
</tr>
</tbody>
</table>
Propensity Score Adjustments

- **Covariate Selection**
 - Selected factors that are related to both the treatment condition and outcome (primary participant’s age, race, marital status, education, number of children at intake and HFFAT score)

- **Computing Propensity Scores**
 - Regressed factors onto a dichotomous variable indicating treatment group membership
 - Predicted probabilities from this regression were transformed using a log linear function and these values were the adjusted propensity scores
Propensity Score Adjustments

- Determining the balance of the propensity scores
 - Standardized mean difference of the propensity scores between the groups is small ($d < .5$)
 - Group variances of the propensity scores are homogeneous
 - Group variances of the residual errors after each covariate is regressed onto the propensity scores are homogeneous
- Among 8 paired comparisons, 4 met all 3 criteria
Propensity Score Adjustments

- **Matching**
 - Participants were matched on the propensity scores using a paired caliper matching procedure.
 - The maximum distance between the matches was restricted to ensure a 95% reduction in selection bias.

- **Estimating Effect**
 - CAN indicated presence or absence of abuse and neglect.
 - McNemar test was used to estimate the adjusted treatment effect for a dichotomous outcome with matched pairs.
 - Works like a Chi-Square for dependent groups.
 - Measures change in outcome for each pair.
Table 8: McNemar test using Matched Pairs of Propensity Scores to Identify Differences in Child Abuse and Neglect Outcomes Between Comparison and Treatment Groups

Notes: ***p≤.001; **p≤.01; * p≤.05

<table>
<thead>
<tr>
<th>Group Comparison and Subgroup based on Age of the Target Child</th>
<th>N</th>
<th>McNemar test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison (< 3 months of service) and High Fidelity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target children up to 12 months of age</td>
<td>117</td>
<td>4.654*</td>
</tr>
<tr>
<td>Target children up to 24 months of age</td>
<td>113</td>
<td>3.375</td>
</tr>
<tr>
<td>Comparison (< 3 months of service) and Completers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target children up to 12 months of age</td>
<td>185</td>
<td>11.115***</td>
</tr>
<tr>
<td>Target children up to 24 months of age</td>
<td>127</td>
<td>7.682**</td>
</tr>
<tr>
<td>No Service and Completers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target children up to 12 months of age</td>
<td>543</td>
<td>24.475***</td>
</tr>
<tr>
<td>Target children up to 24 months of age</td>
<td>267</td>
<td>21.951***</td>
</tr>
<tr>
<td>No Service and High Fidelity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target children up to 12 months of age</td>
<td>583</td>
<td>6.3*</td>
</tr>
<tr>
<td>Target children up to 24 months of age</td>
<td>267</td>
<td>6.568**</td>
</tr>
</tbody>
</table>
Comparing Results Across Statistical Analyses

- **Treatment and Comparison Group Differences**
 - More consistency in results across the techniques with and without adjustments than expected
 - No statistically significant differences between the low dosage service group and the high fidelity group for children up to 24 months of age in the statistically adjusted effects (both covariate and propensity score adjustments)
 - Other group differences had statistically significant results across with and without statistically adjusted techniques.
 - Group differences increased (not always significantly) in most comparisons after accounting for covariates.
 - Variations in the results across the subgroups based on age of the children were not particularly noteworthy
 - Propensity score adjustments had lower treatment effects when comparing no service and high fidelity (< 12 months) and low service dosage to completers (< 24 months)
 - Traditional covariate adjustments had a lower treatment effect when comparing low service to high fidelity (< 12 months)
Internal Validity Strengths and Challenges

- **Strengths**
 - All participants were eligible for services and volunteered to be in the program
 - Control group could not be served due to situational capacity.
 - Covariates were good theoretical and empirical contributors to the outcome (particularly HFFAT risk scores)
 - Using state records reduced missing data for outcome measure

- **Challenges/Limitations**
 - Selection bias likely due to nonrandomized design
 - Limited number of covariates (hidden bias was a likely problem)
 - Measurement attrition
 - Did not have covariate values for all participants (employment, certain items on the HFFAT, such as substance abuse and smoking during pregnancy)
 - However, there was a high percentage of cases retained in the no service and high fidelity group comparisons (around 95%)
 - Treatment Attrition occurred only when participants moved out of state
Construct Validity Strengths and Challenges

- **Strengths**
 - State maltreatment reports are consistent with state contract performance measures
 - Evaluators were familiar with the data (data fields and codes used for maltreatment findings and types) and had timely access to the records
 - Comprehensive maltreatment measure due to inclusion of “verified” and “some indicators”; included precursors to maltreatment; higher percentage with occurrence of maltreatment compared to using just verified
 - State records reduced measurement bias by not using self-reports

- **Challenges/Limitations**
 - Claims that these reports do not include all of the occurrences of child abuse and neglect
 - Claims that these reports are affected by “surveillance bias”
External Validity Strengths and Challenges

Strengths
- Study participants were from several projects throughout the state (in all groups, participants from 30 or more projects)
- No participants were excluded due to language, literacy skills or cultural barriers

Challenges/Limitations
- Collecting HFFAT scores and other participant information from several HFF projects
- Community and project level factors could not be included as factors in the evaluation
Recommendations for Evaluations Measuring Home Visiting Program Impact using Quasi-Experimental Designs

Challenges Evaluating Home Visiting
- Long-term—multiple years of services at varying levels of service
- Families vary in culture, number of adults, number of children, economic circumstances, and receptivity to and compatibility with home visitors
- Curriculum for the home visits is important
- Assessment and/or intake tools vary (simple set of criteria for eligibility or a more thorough assessment of risk)

Formation of Study Groups
- Recommend prospective but can be retrospective
- Include at least one “no service” group that has individuals eligible for the program, willing to participate, but unable to be served due to insufficient capacity (situational)
- Multiple treatment groups can be included depending on the availability of information on program implementation
• **Attrition Analysis**
 - Are those participants not included due to missing data significantly different from those who remain in the study?
 - Are those who drop out of the study different on the outcome from those who remain in the study?

• **Measurement of participant factors related to the outcome or assignment to study groups**
 - Need more than demographic and economic factors
 - Risk assessment helpful (HFFAT score) but including values for the single items on the assessment total would have been ideal
Recommendations for Evaluations Measuring Home Visiting Program Impact using Quasi-Experimental Design

- **Outcome Measurement**
 - Multiple Indicators (self-report and state records)
 - Measure consistent with what is required for state contract should also be included

- **Analytical Techniques**
 - Multiple techniques can allow for replication/confirmation
 - Covariate Models
 - Propensity Score Adjustment
 - Regression Discontinuity Design
 - Supplement RCT when non-equivalency of treatment and control groups is identified
Regression Discontinuity Designs

Regression Discontinuity Designs assign participants to treatment groups based on a cut-off score:

- Assignment variable must be continuous, but does not have to be related to the outcome (e.g. income)
- May give treatment to more needy participants
 - If assignment variable is related to outcome or need for treatment
- Evaluators must have control over assignment
- Since the assignment mechanism is known, it is accounted for in the statistical model
 - The assignment variable serves as a covariate
Regression Discontinuity Designs

- How would it work with home visiting programs?
 - RDDs are well suited for HFF, assuming that participants remain in their assigned treatment groups.
 - HFFAT risk score would serve as a good assignment variable
 - It is continuous
 - As a measure of child abuse and neglect risk, we could assign those at greater risk to the treatment group
 - Treatment effects could be estimated after accounting for risk
 - Unmeasured biases are assumed to covary with HFFAT risk score and are also accounted for by adjusting for the assignment variable
 - Attrition and treatment diffusion may adversely affect the validity of the results.
Contact Information

MARY KAY FALCONER
MFALCONER@OUNCE.ORG
M.H. CLARK
M.H.CLARK@UCF.EDU