TABLE OF CONTENTS

Overview of Changes .. iv
Executive Summary ... vi
Document Purpose .. viii
1. **CSENet Overview** .. 1-1
 1.1 Legislative Basis ... 1-1
 1.2 CSENet Background .. 1-2
2. **Telecommunications** ... 2-1
 2.1 Background ... 2-1
 2.2 Overview of the CyberFusion Integration Suite® ... 2-2
 2.2.1 States’ Production Schedule Using CFI .. 2-2
3. **CSENet Application Suite** ... 3-3
 3.1 CSENet Application Suite Capabilities ... 3-3
 3.1.1 Transaction Validation Process .. 3-4
 3.1.2 Management Information Reports .. 3-6
 3.1.3 State Testing Tools .. 3-8
 3.1.4 Exchange Agreement Software ... 3-9
 3.1.5 Delivery of IRG Data to the State’s CSE System .. 3-10
 3.1.6 Software Management: Release Methodology ... 3-10
4. **Transaction Structure** .. 4-1
 4.1 Transaction Structure .. 4-1
 4.2 Transaction Type .. 4-2
 4.2.1 Functional Type Codes ... 4-2
 4.2.2 Action Codes ... 4-3
 4.2.3 Action Reason Codes .. 4-3
 4.2.4 Valid Transactions ... 4-3
 4.2.5 Data Block Characteristics ... 4-4
 4.2.6 Standard Data Blocks .. 4-4
 4.2.7 Required CSENet Data Blocks ... 4-7
 4.3 Data Element Descriptions and Requirements ... 4-8
5. **Transaction Functional and Business Usage** ... 5-1
 5.1 Core Set of Transactions ... 5-1
 5.2 Transaction Function Codes .. 5-1
 5.2.1 Quick Locate (LO1) ... 5-2
 5.2.2 Case Status Information (CSI) .. 5-5
 5.2.3 Enforcement (ENF) ... 5-8
 5.2.4 Managing State Cases (MSC) .. 5-10
 5.2.5 Paternity (PAT) ... 5-12
 5.2.6 Establishment (EST) .. 5-14
5.2.7 Collections (COL) ... 5-15
5.2.8 Acknowledgments ... 5-17
5.3 Summary ... 5-18

6. Technical Support for States .. 6-1
6.1 Software Team .. 6-1
 6.1.1 Monitoring .. 6-1
 6.1.2 Additional Software Support ... 6-1
6.2 End User Support Team .. 6-1
 6.2.1 States’ Functional Development 6-2
 6.2.2 Informational Support to States 6-2
 6.2.3 File Analysis and Error Identification 6-2
6.3 State Testing ... 6-3
6.4 Service Desk .. 6-3

LIST OF FIGURES AND CHARTS
Figure 2-1: Transaction Exchange Process via CFI at the NCC 2-1
Figure 3-1: The CSENet Application Suite .. 3-3
Figure 3-2: CSENet Transaction Layout ... 3-4
Figure 3-3: Sample Validation Report .. 3-6
Figure 3-4: Sample Transaction Error Report 3-7
Figure 4-1: Examples of CSENet Transaction Structure 4-1
Figure 4-2: Example of a Transaction File Layout 4-2
Figure 5-1: Steps for Building an LO1 Request 5-3
Figure 5-2: Steps for Building an LO1 Response 5-4
Figure 5-3: Steps for Building a CSI Request 5-7
Figure 5-4: Steps for Building a CSI Response 5-7
Figure 5-5: Steps for Building an ENF Request 5-8
Figure 5-6: Steps for Building an ENF Response 5-9
Figure 5-7: Steps for Building an MSC Request 5-11
Figure 5-8: Steps for Building an MSC Response 5-11
Figure 5-9: Steps for Building a PAT Request 5-12
Figure 5-10: Steps for Building a PAT Response 5-13
Figure 5-11: Steps for Building an EST Request 5-14
Figure 5-12: Steps for Building an EST Response 5-15
Figure 5-13: Steps for Building a COL Transaction 5-16
Figure 5-14: Steps for Building an Acknowledgment 5-17
Chart 3-1: CSENet Data Blocks .. 3-5
Chart 4-1: CSENet Functional Type Codes 4-2
Chart 4-2: CSENet Action Codes .. 4-3
Chart 4-3: CSENet Valid Transaction Examples 4-4
Chart 4-4: CSENet Standard Data Blocks 4-5
Chart 4-5: Required Data Blocks .. 4-7
Chart 5-1: Transaction Functional Type Codes 5-2
Chart 5-2: Sequence of Quick Locate Activity 5-3
Chart 5-3: Examples of Triggers for LO1 Requests ... 5-4
Chart 5-4: Examples of Triggers for LO1 Responses ... 5-5
Chart 5-5: Sequence of Case Status Information Activity 5-5
Chart 5-6: Sequence of Enforcement Activity ... 5-8
Chart 5-7: Examples of Triggers for ENF Responses ... 5-9
Chart 5-8: Sequence of Managing State Cases Activity 5-10
Chart 5-9: Sequence of Paternity Activity ... 5-12
Chart 5-10: Examples of Triggers for PAT Requests .. 5-13
Chart 5-11: Sequence of Establishment Activity ... 5-14
Chart 5-12: Sequence of Collections Activity ... 5-16
Chart 5-13: Examples of Triggers for COL Transactions 5-16
Chart 5-14: Examples of Triggers for Acknowledgments 5-17

APPENDICES*
A: Data Dictionary ... A-1
B: Valid Transactions Table ... B-1
C: Data Block Record Layout ... C-1
D: Transaction Functional Matrix .. D-1
E: Transaction Error Codes and Messages .. E-1
F: Data Element Descriptions and Requirements F-1
G: Standardized Postal Abbreviations .. G-1
H: Transaction Error Record Layout ... H-1
I: Test Scenarios ... I-1

Appendices are listed here for informational purposes only.
OVERVIEW OF CHANGES

The Child Support Enforcement Network (CSENet) Interface Guidance Document (IGD), Version 8, presents a major revision of the document, resulting from changes in transaction processing and communications. Additionally, there are detailed changes, particularly in the appendices, resulting from CSENet releases.

Sections of the document that were rewritten entirely are not marked for changes. However, sections that were not rewritten in which there are detailed changes begin with the following statement: “Note: [Opening and closing brackets] surrounding text signify changed material.” The subsequent changes in those sections are then individually marked with brackets [] to denote changes.

Chart 1 describes at a high level the revisions that were made to the sections of Version 8. Many of the changes throughout the document were undertaken to eliminate dated information and redundancy.

<table>
<thead>
<tr>
<th>CHART 1: CHANGES IN VERSION 8.0</th>
<th>Document Part</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>Streamlined to reflect the overall changes in the document with an emphasis on the CSENet application.</td>
<td></td>
</tr>
<tr>
<td>Document Purpose</td>
<td>Outlines the change in the document’s layout and the reorganization of the appendices.</td>
<td></td>
</tr>
<tr>
<td>Part 1, CSENet Overview</td>
<td>Streamlined to make the introduction and legislative basis more concise.</td>
<td></td>
</tr>
<tr>
<td>Part 2, Telecommunications</td>
<td>Describes the current telecommunications method to convey CSENet transactions.</td>
<td></td>
</tr>
<tr>
<td>Part 3, CSENet Application Suite</td>
<td>Focuses primarily on the CSENet application and its five components.</td>
<td></td>
</tr>
<tr>
<td>Part 4, Transaction Structure (formerly Part 5)</td>
<td>Added new transactions and moved the Data Element Descriptions and Requirements charts into Appendix F (see New Appendices Added).</td>
<td></td>
</tr>
<tr>
<td>Part 5, Transaction Functional and Business Usage (formerly Part 6)</td>
<td>Refined the section on the Core Set of Transactions and removed sections on Cancel, Reminder and Update transactions.</td>
<td></td>
</tr>
<tr>
<td>Part 6, Technical Support for States</td>
<td>Streamlined the section to succinctly present support available to states.</td>
<td></td>
</tr>
</tbody>
</table>
CHART 1: CHANGES IN VERSION 8.0

<table>
<thead>
<tr>
<th>Document Part</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Appendices Added</td>
<td>Appendix F, Data Element Descriptions and Requirements (charts moved from the previous Part 5, Transaction Structure) Appendix G, Standardized Postal Abbreviations (moved from Appendix A, Data Dictionary)</td>
</tr>
</tbody>
</table>

Sections of the main document and some appendices have been removed, because they were no longer pertinent to the functioning of CSENet. These included:

- Part 2, OCSENet Architecture
- Part 4, Integrating CSENet 2000 in a State CSE System
- Part 7, Management Reports (pertinent information moved into Part 3, CSENet Application Suite)
- Appendix F, IRG Record Layout (now available online in the IRG Library)
- Appendix G, State Profile
- Appendix H, File Transfer Frequently Asked Questions
- Appendix M, State Interface Errors and Resolutions
EXECUTIVE SUMMARY

This Executive Summary provides an overview of the Child Support Enforcement Network (CSENet) Interface Guidance Document (IGD). The IGD is a comprehensive resource guide that states may refer to as they develop or refine their functionality to use the CSENet application to conduct interstate child support enforcement (CSE) business activities. These activities include, but are not limited to, locating noncustodial parents, establishing paternity and support obligations, enforcing support orders and collecting support funds.

The IGD provides information for a variety of professionals at the state level. While the primary audience is the IV-D agency technical staff, this document also contains useful information to assist state IV-D administrative and programmatic/policy staff in understanding the basic functionality of CSENet.

CSENet Overview

The CSENet system electronically connects state CSE automated systems for the purpose of conducting interstate case business activities. The CSENet system is designed to receive and validate standardized child support case transactions from state CSE systems and to deliver validated transactions to the states to which they are directed.

Telecommunications

The transport of CSENet files is supported by the CyberFusion Integration Suite (CFI) software over the Internet to the National Computer Center (NCC) of the Social Security Administration (SSA).

CSENet Application Suite

The CSENet Application Suite (also referred to as the CSENet application) enables states to electronically transfer child support requests and information to other state CSE systems. The application suite comprises custom-developed software and commercial off-the-shelf products that fully support states in such areas as transaction validation, management information reporting, Exchange Agreements for interstate case communications, testing tools and address downloads from the Intergovernmental Referral Guide (IRG).

Transaction Structure

The system uses standardized transactions to exchange case data. The transactions are composed of structured data blocks that contain standard data elements. All transactions undergo a validation process that enforces a set of rules or requirements. These requirements have been developed with the active participation and contribution of the states.
Transaction Functional and Business Usage

The business activity of a transaction is determined by a combination of Functional Type, Action and Action Reason codes. The function of the CSENet transaction may be specified by one of seven predefined Functional Type codes: Quick Locate (LO1), Case Status Information (CSI), Enforcement (ENF), Managing State Cases (MSC), Paternity (PAT), Establishment (EST) and Collection (COL).

The standardized functional and business usage associated with building and processing CSENet transactions facilitates automated generation of CSENet transactions by states. Many states have developed an automated process with their CSE systems for building outgoing transactions and processing received transactions, using triggers linked to specific data elements. States are encouraged to maximize automation to reduce caseworker intervention.

Technical Support for States

Technical and functional support is provided to the states by specialized software and the End User Support (EUS) teams. The software team monitors and manages the daily data exchange activities of the CSENet application, using various monitoring mechanisms to detect data issues. The EUS team provides technical and functional support to the states, e.g., enabling or disabling exchange agreements, coordinating state testing and providing information/analysis.
DOCUMENT PURPOSE

This IGD is intended to assist states with developing, maintaining and fully using CSENet to conduct CSE business activities. Additionally, the IGD is a resource tool that states will find helpful with completing programming on statewide systems in order to meet state system certification requirements, in modifying an existing system or building a new system.

This document will:

- Provide a high-level overview of CSENet Application Suite
- Describe the telecommunication process using CFI at the SSA NCC
- Discuss the CSENet Application Suite in detail
- Explain the transaction structure
- Provide functional guidance and identification of automated triggers to improve data quality and make efficient use of information
- Describe the technical support available to states for business usage, analysis and technical issues
- Incorporate appendices that provide information on data elements, business usage and error codes

The IGD is available in the CSENet Library at the following URL:

The following descriptions provide a summary of the information contained in each section and appendix.

Part 1, CSENet Overview, provides a brief overview of the application suite. This section also highlights the laws impacting the CSE program and state CSE systems.

Part 2, Telecommunications, provides an overview of the CFI transmission method.

Part 3, CSENet Application Suite, explains the software applications and services that work together to provide child support information processing. This section also describes the software management techniques used by CSENet, and testing tools available to states.

Part 4, Transaction Structure, describes the overall structure and classification (transaction type) of a CSENet transaction. It also discusses the requirements necessary to communicate a valid transaction.

Part 5, Transaction Functional and Business Usage, provides a description of the functional and business usage associated with building and processing transactions. It also explains triggers and provides examples of how states can increase automation.
Part 6, Technical Support for States, describes the technical and functional support available to states.

Appendix A, Data Dictionary, describes the definitions and descriptions for the data fields contained in the Data Block Record Layout (Appendix C).

Appendix B, Valid Transactions Table, contains a listing of the valid transactions that are used to communicate interstate case information from state to state using the CSENet application.

Appendix C, Data Block Record Layout, provides data layouts, field definitions and requirements necessary for the establishment of CSENet functionality on state CSE systems.

Appendix D, Transactional Functional Matrix, is a comprehensive document that contains descriptions of transaction business usage, required data, and data blocks identified as essential for conducting electronic interstate case processing.

Appendix E, Transaction Error Codes and Messages, lists all transaction error codes and messages produced by the CSENet application when processing or validating a transaction file from a state CSE system.

Appendix F, Data Element Descriptions and Requirements, includes quick reference charts listing all data elements within each data block and those required for specific transaction types.

Appendix G, Standardized Postal Abbreviations, contains postal abbreviations used by CSENet for the United States, Canada and Mexico.

Appendix H, Transaction Error Record Layout, describes each field in the Transaction Error files created by CSENet.

Appendix I, Test Scenarios, describes test scenarios designed for states’ use in testing their programming.

Appendix J, Acronyms, provides a list of acronyms used in the IGD.

Appendix K, Glossary of Terms, provides definitions of common terms used in the IGD.
1. **CSENET OVERVIEW**

The Federal Office of Child Support Enforcement (OCSE) within the Administration for Children and Families (ACF) in the Department of Health and Human Services (HHS) provides national leadership and direction in planning, managing and coordinating the automated exchange of interstate case data between child support (IV-D) agencies across the nation.

The CSENet application was conceived and developed by OCSE in the early 1990s. It facilitates and supports automated transmission of interstate child support information. State systems electronically initiate and respond to CSE case activities in other states for:

- locating noncustodial parents (NCP)
- establishing paternity and support obligations
- enforcing support orders and collection of monies
- gathering additional case information

This custom application suite has been designed to receive, validate and store standardized transactions between state CSE systems.

1.1 Legislative Basis

Child support enforcement requires the coordination and cooperation of multiple organizations at the federal, state and local levels. Interstate case processing depends on multiple agencies in two or more jurisdictions coordinating activities necessary to locate an NCP, establish paternity and support orders, as well as enforce and collect support obligations. Additionally, these agencies must communicate detailed information about the case while remaining cognizant of other states’ various policies and procedures.

Previously these administrative and jurisdictional complexities enabled parents to evade support obligations by moving to another state. However, laws were enacted that provide IV-D agencies a legal basis for pursuing NCPs across state boundaries and the opportunity to develop and standardize interstate case processing using automated communication systems.

The following laws played a crucial role in laying the legal foundation for effective interstate case processing:

- Social Security Act (SSA) of 1975
- Family Support Act (FSA) of 1988
- Personal Responsibility and Work Opportunity Reconciliation Act (PRWORA) of 1996
- Intergovernmental Regulation of 2010

Moreover, these laws provided the impetus for the creation and development of automated state CSE systems and the CSENet system.
1.2 CSENet Background

Prior to 1992, exchanging child support case information with another state required manual completion of Uniform Reciprocal Enforcement of Support Act (URESA) forms and mailing the documents to the other state. At that time, because of the manual process, lack of standardization and an as-yet defined legal basis for pursuing parents across state lines, states did not have the tools for collecting child support from parents in other states. In response to an ever-increasing interstate caseload, complex paperwork requirements and landmark legislative acts (SSA and FSA), OCSE implemented CSENet in 1992.

The CSENet concept was originally envisioned as an end-to-end CSE information network linking automated CSE systems encompassing state and local CSE offices, court systems, local offices, central registries and federal agencies. When OCSE developed the overall design for CSENet, there was the assumption that all states would eventually establish their own comprehensive, automated child-support systems, built in accordance with the state certification requirements set forth by OCSE.

Within this model, OCSE determined the following three general design features that the CSENet system should perform:

1. Process transactions using a standardized software application
2. Establish and maintain a national transaction server to validate and route transactions between states
3. Use a standardized communications network to perform all communication functions

Once state CSE systems were integrated with CSENet, the electronic flow of case information among the states would be automatic, thus providing easy and efficient communication of case information. Today, what OCSE envisioned is a reality, with 54 diverse state and territory systems able to communicate child support information across jurisdictional lines to facilitate the collection of child support for families across the nation and beyond.
2. TELECOMMUNICATIONS

This section describes the current data transport method for transmitting CSENet transactions and presents a brief description of the redeployment of CSENet to the SSA NCC.

2.1 Background

The electronic transmission method by which interstate child support case data is exchanged between agencies has changed. Historically, CSENet files were transported via the OCSE Network.

However, OCSE was supporting Federal Parent Locator Service (FPLS) data exchanges to child support enforcement agencies across two separate networks: the OCSENet and the SSA network. It was decided to consolidate communications across the SSA network and to redeploy the CSENet application to the SSA NCC. The current file transfer method used for all data exchanges is the CyberFusion Integration Suite (CFI).

2.2 Overview of the CyberFusion Integration Suite®

The file transmission for states is being performed by the CFI transmission method directly with NCC. The content and format of data files has remained the same. CSENet data files picked up from the states are processed at the NCC. Figure 2-1 illustrates the transaction exchange process via CFI.

Figure 2-1: Transaction Exchange Process via CFI at the NCC
2.2.1 STATES’ PRODUCTION SCHEDULE USING CFI

As states migrate to CFI, the goal is to consolidate the daily processing of all inbound and outbound CSENet transactions to a single daily batch cycle instead of two daily cycles. The processing of CSENet transactions occurs during the morning (AM) cycle.
3. CSENET APPLICATION SUITE

The purpose of the OCSE Child Support Enforcement Network (CSENet) Application Suite is to facilitate and support automation and transmission of interstate child support information. To use the services of the CSENet suite, state users electronically initiate and respond to CSE case activities in other states.

3.1 CSENet Application Suite Capabilities

The application suite provides five major capabilities to support interstate child support information processing. These components are composed of custom-developed software and commercial off-the-shelf (COTS) applications. Figure 3-1 illustrates the components of the application.

Figure 3-1: The CSENet Application Suite

- **Transaction Management Application** – provides validation and verification of state transactions and feedback to states in the form of validation and error reports
- **Exchange Agreement Software** – provides states the ability to designate specific Functional Type codes and the states with which they desire to exchange transactions
- **Intergovernmental Referral Guide (IRG) Software** – provides states semi-monthly updates for state Federal Information Processing Standards (FIPS) codes and addresses from the IRG website. The updates also include the tribal and international codes.
- **State Testing Tools** – provide states the ability to test and evaluate their CSE system programming

- **Management Information Reports** – provide data primarily for ad hoc reporting

These components are maintained and enhanced by the CSENet team with the support of State Technical Workgroups and OCSE. All capabilities are discussed in detail in the following sections.

3.1.1 TRANSACTION VALIDATION PROCESS

The Transaction Management Application (TMA) is a group of functions in the CSENet suite used for the validation of state transaction files and routing of CSENet transactions.

The transaction validation process enforces data integrity and promotes commonality throughout the CSENet user community. The TMA verifies each transaction received from a state system against the Data Block Record Layout rules, constraints and data format standards (see Appendix C, Data Block Record Layout).

If the transaction passes validation, it is loaded into a file to be uploaded to the destination state system. After all transactions in a file are processed, the TMA generates a Validation Report (described in Section 3.1.2.1). If the transaction encounters errors at any point during the validation process, it is rejected and an error message is added to the Error Report file (described in Section 3.1.2.2). In the next outbound session, the Validation Report file and Error Report file are uploaded and sent to the states.

3.1.1.1 Transaction File

A transaction file is a flat American Standard Code for Information Interchange (ASCII) file containing transactions received from a state system. Each transaction occupies one record in the file and each record is terminated with a new line character (octal '012' or character '\n').

Figure 3-2 depicts the format of a transaction record. Every transaction record must begin with a Header and end with a new line character. For a more detailed description of the layout of a transaction Header, refer to Part 4, “Transaction Structure.”

Figure 3-2: CSENet Transaction Layout

| Transaction Header | Data Block 1 | Data Block 2 | Data Block n | Terminator |
The Header provides key transaction information such as:

- The source and destination (FIPS) codes
- Transaction Functional Type, Action and Action Reason codes identifying the business conveyed by the transaction
- Case identification number (ID) to which the transaction refers
- Data block indicators that show how many data blocks, if any, are attached to the Header
- Transaction serial number to uniquely identify the transaction

The transaction data blocks contain case data to be transmitted from one state to another. One or more data blocks may follow the transaction Header. The minimum number of data blocks that must be transmitted depends on the type of transaction being sent. However, a state may attach additional data blocks to any transaction. There are several kinds of data blocks that can be attached to a transaction.

Chart 3-1 describes the data blocks and indicates the maximum number of data blocks that may be attached to a single transaction.

<table>
<thead>
<tr>
<th>Data Blocks</th>
<th>Maximum Number</th>
<th>Byte Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>1</td>
<td>351</td>
<td>General case information, contact and payment addresses</td>
</tr>
<tr>
<td>NCP Identification</td>
<td>1</td>
<td>181</td>
<td>Physical description of the noncustodial party</td>
</tr>
<tr>
<td>NCP Locate</td>
<td>1</td>
<td>1421</td>
<td>Location and employer information about the noncustodial party</td>
</tr>
<tr>
<td>Participant</td>
<td>9</td>
<td>341</td>
<td>Information about other participants in the case</td>
</tr>
<tr>
<td>Order</td>
<td>9</td>
<td>254</td>
<td>Support, [medical] or paternity order information</td>
</tr>
<tr>
<td>Collection</td>
<td>9</td>
<td>70</td>
<td>Information about order collections</td>
</tr>
<tr>
<td>Information</td>
<td>1</td>
<td>416</td>
<td>General text information</td>
</tr>
</tbody>
</table>

Note that, although not every data block appears in every transaction (in fact, most transactions will have only a few data blocks); the data blocks must appear in the order shown in Chart 3-1. For example, when a transaction containing a Header, a Case data block and an Information data block is generated, the Information data block must come after the Case data block, not before it.
3.1.1.2 Data Archiving

This section discusses the archiving of CSENet data on the state system and the CSENet server.

3.1.1.2.1 STATE CSE SYSTEM

Most states archive CSENet data for a specified number of days, in accordance with state and federal requirements for archiving data. The amount of data and the number of days to archive needs to be determined by state system staff.

3.1.1.2.2 TRANSACTION LOADING AND ROUTING

The transaction loading and routing functions of CSENet load valid transactions into the CSENet server’s database and route them to the appropriate state systems. Transactions are routed to the state specified in the Other-FIPS-State field in the transaction’s Header.

3.1.2 MANAGEMENT INFORMATION REPORTS

States receive reports from CSENet regarding the transactions that have been retrieved and validated. States may also receive a detailed report on transaction errors when errors occur. Further, states may request customized reports from their state’s technical representatives on the EUS team to assist in analysis and troubleshooting.

3.1.2.1 Validation Reports

The purpose of a Validation Report is to provide summary statistics of a transaction file from a state CSE system that has been validated by the TMA. Figure 3-3 shows a sample Validation Report.

Figure 3-3: Sample Validation Report

```
DFT VALIDATION REPORT
Date Jan 13 CENY
Created on 02:33:02
File Name: CLIPL
Number of Bytes: 107118

number of transactions: 65
Number of VALID trans: 65
Number of INVALID trans: 0
Number of errors: 0

Statistics
******************************************************************************
number of errors where the mandatory data values are missing: 0
number of errors where the data values were invalid: 0
number of errors that miscellaneous: 0

Error by Data Blocks:
HEADER: 0
CASE: 0
NCP IDENT: 0
NCP LOCATE: 0
PARTICIPANT: 0
ORDER: 0
COLLECTION: 0
INFORMATION: 0
```
When a transaction file has been validated and some transactions contain errors (have been invalidated), the Validation Report contains high-level reporting of the number of invalid transactions, number of errors and data blocks in which the errors occurred. (The Transaction Error Report in Section 3.1.2.2 contains detailed information on errors.)

3.1.2.2 Transaction Error Reports

The Transaction Error Report, referred to as the Error Report, contains messages for each transaction error detected during the transaction file validation process. As of 2004, the Error Report may contain warning messages that indicate that the transaction data failed to meet usage recommendations, but nevertheless will be routed to the destination state.

Messages written to the Error Report are based on the record layout specified in Appendix H, "Transaction Error Record Layout," and use the warning and error codes and messages listed in Appendix E, Transaction Error Codes and Messages. Figure 3-4 contains a sample of a Transaction Error Report.

Figure 3-4: Sample Transaction Error Report

```
000003 1600005 5300000 000075  R LO1 20011212 E571 000000001829 Invalid Send Payments Bank Account
000004 1600005 5300000 000075  R LO1 20011212 E572 000000001829 Invalid Send Payments Routing Code
000005 1600005 F000000 000115  R LO1 20011212 E904 000000001830 Invalid Other Fips State
```

The Error Report is uploaded and routed to the state that sent the transaction.

During validation, multiple errors may be generated for a transaction, unless the transaction contains a fatal error. After the first fatal error is identified, the validation process for that transaction stops and the fatal error is written to the Error Report. Examples of fatal errors include “Invalid Other FIPS County” and “Duplicate Transaction Serial Number.” A list of fatal errors may be found in Appendix E, “Transaction Error Codes and Messages.”

3.1.2.3 Ad Hoc Reports

CSENet provides management information (MI) reports to states upon request in various formats. Reports may be requested by contacting the EUS team.

3.1.2.4 State Transaction Reports

The state Type of Transactions Report may be requested by a state through the EUS team. This report presents high-level summary data of transactions sent and received by an individual state. Although the time period for this report is usually one month, it may be generated for a date range specified by the requesting state. The report contains the number of transactions by Functional Type code and the total number of transactions for the period specified.
3.1.3 STATE TESTING TOOLS

Several capabilities in the CSENet suite are dedicated to testing the programming validity in a state system. These tools include:

- Interface-to-test datasets on a state system
- Test Deck application
- State loopback testing

3.1.3.1 Interface-to-Test Dataset

The Interface-to-Test dataset is used to pick up test transactions from the Outgoing Transactions test dataset in a state system and to return the Validation and Error Reports generated by processing these transactions. Any valid transactions from the state with a destination FIPS code of another state are routed to a file to be sent to the Incoming Transactions test dataset in the destination state system.

Any valid test transactions with a destination FIPS code of 9100000 or 9500000 are archived by CSENet, but are not sent to any state. These FIPS codes are used exclusively for a state to test transaction validity with CSENet, not for testing with other states. States may choose not to receive a test file from other states by contacting the EUS team at 1-800-258-2736 or emailing CSENet2000@lmco.com.

3.1.3.2 Test Deck Application

The Test Deck application tests the ability of a state system to process transactions it receives. Upon request, the Test Deck can be used to generate a file of transactions to be sent to the Incoming Transactions test dataset. The Test Deck can generate files with the following types of transactions:

- One of each type of all valid transactions with varying Functional Type, Action and Action Reason code combinations
- One or more maximum-length transactions containing the maximum number of all types of data blocks
- Any number of valid transactions based on a valid transaction Functional Type, Action and Action Reason code combination

Appendix I, Test Scenarios, contains a complete list of predefined test scenarios that are available on request, along with the expected results of the tests.
3.1.3.3 Loopback Testing

In addition to the above tools, another test tool available to states is loopback testing. Loopback testing provides the ability to generate tailored transactions to suit a state’s specific needs. For example, states create transactions using their own FIPS code as both the Local-FIPS-State and Other-FIPS-State codes. Once the CSENet server receives the transactions, it performs validation and returns the appropriate information to the originating state for analysis. Whenever desired by states, loopback testing may be performed; however, it can only be used with test datasets.

3.1.4 EXCHANGE AGREEMENT SOFTWARE

The Exchange Agreement software provides states the ability to exchange production and test transactions. State representatives can contact their CSENet technical representative to establish an agreement to exchange specific Functional Type code with another state. If there is a need to stop communications for a period of time, states have the following options:

- Disable with specific states
- Disable by specific state and Functional Type code

3.1.4.1 Enabling State Exchange Agreements

To establish an Exchange Agreement, the point-of-contact (POC) from the originating state should contact the POC in the other state directly to obtain concurrence on the exchange. The originating POC then should contact the state’s CSENet technical representative to request enabling an exchange agreement with the other state. Once the Exchange Agreement for a specific Functional Type code is verified, communications are enabled to allow the exchange of transactions between the two states. Communications can be established for either the production or test systems.

3.1.4.2 Disabling State Exchange Agreements

To disable communications with one or more states, the state’s POC should contact the state’s technical representative to specify the Functional Type code and state with which to discontinue communications. Additionally, the POC should inform the POC in the other state to prevent the generation of further transactions. More important, if a state’s system is going to be out of service for an extended period, the POC should request that all Exchange Agreements be disabled.

3.1.4.3 Viewing Communications Status

The Intergovernmental Referral Guide (IRG) is an information resource tool used to facilitate the exchange of information relevant to child support enforcement between states. States can view the communications status for their state and others on the IRG website.
3.1.5 DELIVERY OF IRG DATA TO THE STATE’S CSE SYSTEM

IRG data includes states’ profiles of services, valid FIPS codes and addresses, OCSE federal and regional office data and addresses of selected international child support enforcement agencies. Of primary relevance to CSENet is state FIPS codes and address data.

This IRG data is available for download directly from the IRG and also via delivery from CSENet. Note that IRG data provided by CSENet is in the same format and contains the same information as that provided on the IRG website.

States may request that the IRG Master file be delivered via CSENet by contacting the EUS team. The state receives IRG data files from CSENet on the first and sixteenth business days of the month. If either date falls on a weekend or holiday, files are delivered the following business day. The IRG Master File dataset at the state is overwritten each time a file is uploaded so that it never contains duplicate IRG records.

3.1.6 SOFTWARE MANAGEMENT: RELEASE METHODOLOGY

The software enhancement and change process focuses on the management and quality assurance techniques used by OCSE in the FPLS Release Methodology found on the OCSE website. The release methodology promotes the following:

- Software across all systems is released simultaneously
- A schedule is published with standard release cycles
- States are given an opportunity for planning and comment
- State involvement through teleconferences

Under certain circumstances, emergency and out-of-cycle patches are required. When state systems are to be impacted by a change in CSENet, state POCs are informed in advance of the reason, type and dates of the change and its impact to their systems.

With scheduled software releases, all changes follow the standard process of requirement and impact analysis.

3.1.6.1 Testing

All software enhancements and changes applied to CSENet undergo rigorous technical and functional in-house testing. Additionally, all software changes having an impact on state system programming are tested and evaluated. States may elect to participate in testing to verify system programming. This provides states an opportunity to exchange transactions via test data sets with:

- The CSENet server using FIPS code 9100000
• Other states participating in testing
• Their own system through loopback testing
4. TRANSACTION STRUCTURE

[Opening and closing brackets] surrounding text signifies changed material.

The CSENet user community uses a common data format for transactions to exchange interstate case information. To ensure data integrity, each transaction is validated by the CSENet server against a set of requirements, which have been developed with the active participation and contribution by states. Valid transactions are forwarded to other states; error messages for invalid transactions are returned to the originating state for resolution.

This section describes the overall structure and classification (transaction type) of a CSENet transaction. In addition, requirements for valid transactions are discussed.

4.1 Transaction Structure

CSENet transactions are composed of data blocks and data elements, which contain child-support case information. All transactions must begin with a Header, which contains identification information specific to that transaction. A transaction may contain any number of data blocks depending on the transaction type. All transactions are processed by the CSENet TMA. Section 4.2.6, Standard Data Blocks, describes the data blocks, their requirements and the maximum number of each data block that can be included in a single transaction. For additional information on the file structure, refer to Part 3, CSENet Application Suite. Figure 4-1 illustrates several examples of CSENet transaction structure.

Figure 4-1: Examples of CSENet Transaction Structure
Each transaction is a single string of data terminated with a new line character. Figure 4-2 illustrates the layout of a transaction file.

Figure 4-2: Example of a Transaction File Layout

```
Transaction #1:  

Transaction #2:  

Transaction #3:  

Transaction #4:  

Transaction #5:  

\n = Indicates New Line Character
```

4.2 Transaction Type

The business activity being communicated is identified in the Header by a combination of codes that specify the functional type, action and action reason for the CSENet transaction. The transaction type determines the required data blocks and elements that comprise each transaction. Valid combinations are specified in the CSENet Valid Transactions Table (Appendix B).

4.2.1 FUNCTIONAL TYPE CODES

The Functional Type code, required for each transaction, refers to the child support business activity the transaction supports. (Part 5, Transaction Functional and Business Usage, provides further details on the business usage of transactions.) Chart 4-1 shows the seven valid Functional Type codes.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO1</td>
<td>Quick Locate</td>
</tr>
<tr>
<td>CSI</td>
<td>Case Status Information</td>
</tr>
</tbody>
</table>
CHART 4-1: CSENET FUNCTIONAL TYPE CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENF</td>
<td>Enforcement</td>
</tr>
<tr>
<td>MSC</td>
<td>Managing State Cases (ongoing case activity and administrative services)</td>
</tr>
<tr>
<td>PAT</td>
<td>Paternity Establishment</td>
</tr>
<tr>
<td>EST</td>
<td>Order Establishment</td>
</tr>
<tr>
<td>COL</td>
<td>Collection</td>
</tr>
</tbody>
</table>

4.2.2 ACTION CODES

The Action code, also required for each transaction, describes the kind of transaction, for example, a request for information or provision of information in response to a request from another state. Chart 4-2 shows the six valid Action codes.

CHART 4-2: CSENET ACTION CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Request (initial requesting activity)</td>
</tr>
<tr>
<td>A</td>
<td>Acknowledgment of receipt of a Request</td>
</tr>
<tr>
<td>P</td>
<td>Provision of information/Response</td>
</tr>
<tr>
<td>M*</td>
<td>Reminder (used when a Response is overdue)</td>
</tr>
<tr>
<td>U*</td>
<td>Update of a previously transmitted Request</td>
</tr>
<tr>
<td>C*</td>
<td>Cancellation of a previously transmitted Request</td>
</tr>
</tbody>
</table>

[*Reminder, Update and Cancel transactions are not included in the core set of transactions and may be considered for deletion in the future. Refer to Section 5.1, Core Set of Transactions, for more information on the transactions included.*]

4.2.3 ACTION REASON CODES

The Action Reason code, which is not required for every transaction, provides further definition of the business activity that the transaction communicates. The Valid Transactions Table contains Action Reason code descriptions and specific combinations of Functional Type, Action and Action Reason codes. Chart 4-3 illustrates several examples of valid reason codes and their descriptions.
4.2.4 VALID TRANSACTIONS

All transactions pass through the CSENet validation routine. This process supports standardization, as well as the business requirements of states and ensures that only valid CSENet transactions are communicated to the states.

Valid transactions are those that use the Functional Type, Action and Action Reason code combinations listed in the Valid Transactions Table (Appendix B) and that conform to the requirements specified in the Data Block Record Layout (Appendix C). To assist states with transaction development, quick reference charts listing all data elements within each data block and those required for specific transaction types are provided in Appendix F, Data Element Descriptions and Requirements.

4.2.5 DATA BLOCK CHARACTERISTICS

This section discusses the composition of the data blocks in CSENet transactions along with their descriptions and requirements. Each data block contains data elements that convey child support case information. The transaction type determines the required data blocks and elements; however, additional data blocks beyond those required may also be included in any transaction. The Data Block Record Layout (Appendix C) contains additional information regarding requirements for transaction validation.

4.2.6 STANDARD DATA BLOCKS

Standard data blocks ensure uniform communications between diverse state systems by providing a common format for CSE case information. This section describes the data blocks that compose a CSENet transaction. Chart 4-4 identifies and describes each data block and lists the total byte size for each and the maximum number of data blocks that may be attached to a single transaction.

The Header is required for each transaction and precedes all other data blocks. The Header contains unique information such as:

- FIPS codes indicating the source and destination of the transaction
Functional Type, Action and Action Reason code identifying the business conveyed by the transaction
- Case ID to which the transaction refers
- Indicators specifying the data blocks present in the transaction
- A transaction serial number that uniquely identifies the transaction

Header Formats – There are two formats for the Header, one for outgoing transactions (sent by states to CSENet) and the other for incoming transactions (sent by CSENet to states). A maximum of 8481 bytes is possible in an outgoing transaction; a maximum of 8475 bytes is possible in an incoming transaction. (The reason for the difference of 6 bytes is the optional data elements such as, Sent-Date and Sent-Time, contained in an outgoing transaction’s Header.)

Note: State systems must be able to accommodate a file containing transactions with the maximum byte size. (Refer to Chart 4-4 for specifics on each data block.)

Data Block Sequence – Data blocks in a transaction must appear in the sequence shown in Chart 4-4 even when the transaction does not contain all available data blocks. For example, if the transaction contains both Participant and Information data blocks, the Participant data blocks must follow the NCP Locate data block and precede the Information data block.

<table>
<thead>
<tr>
<th>CHART 4-4: CSENET STANDARD DATA BLOCKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Block Name</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Outgoing Header (States must send to the CSENet server)</td>
</tr>
</tbody>
</table>
CHART 4-4: CSENET STANDARD DATA BLOCKS

<table>
<thead>
<tr>
<th>Data Block Name</th>
<th>Maximum Number of Data Blocks</th>
<th>Number of Bytes per Block</th>
<th>Data Block Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Header (States receive from the CSENet server)</td>
<td>1</td>
<td>121</td>
<td>Provides information about the source and destination of the transaction, the case IDs to which the transaction refers and indicators that show how many data blocks are included. It also provides fields for tracking information, including Date-Received, Time-Received and Sent-to-State-Host, that states may fill prior to processing a transaction received.</td>
</tr>
<tr>
<td>Case</td>
<td>1</td>
<td>351</td>
<td>Provides general case, contact and payment information.</td>
</tr>
<tr>
<td>NCP Identification</td>
<td>1</td>
<td>181</td>
<td>Provides information identifying NCP or alleged father.</td>
</tr>
<tr>
<td>NCP Locate</td>
<td>1</td>
<td>1421</td>
<td>Provides NCP or alleged father location and employer information.</td>
</tr>
<tr>
<td>Participant</td>
<td>9</td>
<td>341</td>
<td>Provides case participant information. The relationship field indicates the role of participants in the case (custodial party, dependent, etc.).</td>
</tr>
<tr>
<td>Order</td>
<td>9</td>
<td>254</td>
<td>Provides support, [medical] or paternity order information.</td>
</tr>
<tr>
<td>Collection</td>
<td>9</td>
<td>70</td>
<td>Provides information about money collected.</td>
</tr>
<tr>
<td>Information</td>
<td>1</td>
<td>416</td>
<td>Provides area of free form text for general information.</td>
</tr>
</tbody>
</table>
4.2.7 REQUIRED CSENET DATA BLOCKS

The transaction type (the combination of Functional Type, Action and Action Reason codes located in the Header) determines the required data blocks. The data block indicators located in the Header must be filled appropriately to indicate the data blocks included within the transaction. Additionally, if the Attachments indicator in the Header is Y, the Information data block indicator must be set to 1 and the Information data block is then required.

Chart 4-5 depicts required data blocks based on Functional Type and Action codes. Note: transactions with an Action code of A (acknowledgment), C (cancellation) or M (reminder) require only the Header and, therefore, are not included in this chart.

[Opening and closing brackets] surrounding text signifies changed material.

<table>
<thead>
<tr>
<th>Data Block Name</th>
<th>Requests and Updates, Action Codes R and U</th>
<th>Responses, Action Code P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L O S I E S T E N F P M S C</td>
<td>L O S I E S T E N F P M S C</td>
</tr>
<tr>
<td>Header</td>
<td>R R R R R R R R R R</td>
<td>R R R R R R R R R R R R R R R R</td>
</tr>
<tr>
<td>Case</td>
<td>R R R R [I]</td>
<td>R A R R R R D R</td>
</tr>
<tr>
<td>NCP-ID</td>
<td>R R R R [I]</td>
<td>R R R R [G]</td>
</tr>
<tr>
<td>NCP Locate</td>
<td>R R R</td>
<td></td>
</tr>
<tr>
<td>Participant</td>
<td>B B B [H]</td>
<td>A</td>
</tr>
<tr>
<td>Order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection</td>
<td></td>
<td>[F]</td>
</tr>
<tr>
<td>Information</td>
<td>C C C C C C C C C C C E C</td>
<td></td>
</tr>
</tbody>
</table>

Chart 4-5: Legend

- **R** Required data block
- **Blank** Non-required data block
- **A** Required if the Response is successful, i.e., the second character of the Reason code is S
- **B** At least two Participant data blocks required on these transactions: one with the Relationship code of C and one with the Relationship code of D
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Required if the Attachments indicator in the Header is Y (applies to all transactions)</td>
</tr>
<tr>
<td>D</td>
<td>Required except for MSC P REJCT</td>
</tr>
<tr>
<td>E</td>
<td>Required for the MSC P REJCT, MSC P GSCAS and the [MSC P GSTAI]</td>
</tr>
<tr>
<td>F</td>
<td>Required for COL P CITAX</td>
</tr>
<tr>
<td>G</td>
<td>Required for COL P CISUB</td>
</tr>
<tr>
<td>H</td>
<td>Required for MSC R GRPAY. At least two Participant data blocks required on this transaction: one with the Relationship code of C and one with the Relationship code of D, indicating a dependent</td>
</tr>
<tr>
<td>I</td>
<td>Required for MSC R GRPAY</td>
</tr>
</tbody>
</table>

4.3 Data Element Descriptions and Requirements

Each CSENet data block contains data elements transmitting child support case information between state CSE systems. Each data element contained in a data block is described in the Data Block Record Layout (Appendix C) and the Data Dictionary (Appendix A).

When a data block is present in a transaction, certain data elements and/or specific values are required to be present. The transaction type (combination of Functional Type and Action codes located in the Header) determines requirements. An Action Reason code, if present, may also impact the requirements.

Each chart located in Appendix F, Data Element Descriptions and Requirements, is devoted to a specific data block. The charts present a quick-reference summary of all elements within a data block and the required data elements for specific Functional Type and Action codes.

Note: Since transactions with an Action code of A, C or M do not require data blocks except the Header, rules for these transactions are not listed. However, the Other-Case-ID field in the Header is required for all transactions with an Action code of A.
5. TRANSACTION FUNCTIONAL AND BUSINESS USAGE

This section contains a general description and possible uses for each of the CSENet Functional Type codes. It also identifies key indicators on state CSE systems to serve as triggers to automatically generate and respond to CSENet transactions. For specific transaction and data usage, refer to Appendix B, Valid Transactions Table, Appendix C, Data Block Record Layout, and Appendix D, Transaction Functional Matrix.

5.1 Core Set of Transactions

As part of OCSE’s Continuous Service Improvement (CSI) effort, CSENet transactions were examined in detail to determine how business usage of CSENet could be improved. In partnership with states, a reduced, core set of transactions was identified to provide states with a more precise and well-defined transaction set for interstate communication. OCSE recommends that states use the core set of transactions when enhancing existing programming, as well as during the development of new CSENet functionality. Since the core set of transactions were established, nine new transactions have been added to this group.

The core set of transactions is presented in Appendix B, Valid Transactions Table, in Chart B-5. Valid transactions not included in the core set are listed at the end of each section of Appendix D, Transaction Functional Matrix.

5.2 Transaction Function Codes

This section provides a high-level view of the business usage for each Functional Type code, shown in Chart 5-1. It also provides guidance for states on the automation of transaction processing and possible practices and actions, e.g., Acknowledgments.

Due to the differing nature of state CSE systems, a variety of processing options exist and states must decide what best meets their needs. Additional information on Functional Type codes can be found in Part 4, Transaction Structure.

[Note: Guidance for use of Reminder, Cancel and Update transaction types is not included in this section. These transactions are not included in the core set of transactions and may be considered for deletion in the future.]
CHART 5-1: TRANSACTION FUNCTIONAL TYPE CODES

<table>
<thead>
<tr>
<th>Function</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Locate (LO1)</td>
<td>Locating noncustodial parents (NCPs) and custodial parties (CPs).</td>
</tr>
<tr>
<td>Case Status Information (CSI)</td>
<td>Requesting case information from another state based on FCR proactive match, FCR Query Response or other source and used for interstate case reconciliation (ICR).</td>
</tr>
<tr>
<td>Enforcement (ENF)</td>
<td>Enforcing support orders.</td>
</tr>
<tr>
<td>Managing State Cases (MSC)</td>
<td>Supporting ongoing case activity and administrative services required by the Uniform Interstate Family Support Act (UIFSA) and, most recently, the Intergovernmental Regulation of 2010.</td>
</tr>
<tr>
<td>Paternity (PAT)</td>
<td>Establishing paternity.</td>
</tr>
<tr>
<td>Establishment (EST)</td>
<td>Establishing support orders. A single transaction can be used to request establishment of both paternity and support orders.</td>
</tr>
<tr>
<td>Collection (COL)</td>
<td>Notifying a state of income tax activity, including submission and interception.</td>
</tr>
</tbody>
</table>

A Note about Automation: Many states have developed automated processes for building outgoing transactions and processing incoming transactions. This approach greatly facilitates and enhances the interstate communication capabilities provided by CSENet.

When building automatic processes into a CSE system, caution should be used to ensure information is not duplicated. For example, upon receiving a notice of a hearing from a state and updating the CSE system, the entry of this data should not trigger a transaction to the state that just provided the information. States should also record and track incoming and outgoing transactions.

5.2.1 QUICK LOCATE (LO1)

The LO1 Functional Type code is a highly successful way of locating NCPs and CPs in a quick and efficient manner. It is typically used to obtain an address and/or employer when a state has reason to believe that the NCP or CP works or resides in another state.

[Note: Although the business use of the LO1 R transaction was originally stated as locating NCPs only, it has in practice also been used to locate CPs. In discussions, states agreed to expand the LO1 R usage to explicitly include CP locate, rather than create a new transaction.]
Using the LO1 affords the opportunity for the system to automatically record and act on information provided by an LO1 Request. The Action Reason codes for LO1 transactions provide very specific information. Chart 5-2 illustrates a possible sequence for the locate process.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The initiating state identifies the state in which the NCP or CP may reside or work.</td>
</tr>
<tr>
<td>2</td>
<td>The initiating state generates an LO1 Request providing, at a minimum, the NCP or CP’s name, social security number and/or date of birth.</td>
</tr>
<tr>
<td>3</td>
<td>The responding state receives the Request and begins a search for the NCP or CP. (Note: Since the responding state is not required to open a new IV-D case, it does not return a formal Acknowledgment.) The state may build a shell case or run the NCP or CP through it’s locate sources from a file or other methods.</td>
</tr>
<tr>
<td>4</td>
<td>After obtaining locate information, the responding state sends an LO1 Response to the initiating state, providing data found on the NCP, CP or, if information was not found, an appropriate Action Reason code to that effect.</td>
</tr>
<tr>
<td>5</td>
<td>Upon receiving the Response, the initiating state updates its system with the new information and determines the next step of case processing.</td>
</tr>
</tbody>
</table>

5.2.1.1 Building an LO1 Request

When building LO1 Requests, it is important to consider two issues: how the CSE system identifies the NCP or CP that needs to be located and to which state the Request should be sent. Figure 5-1 shows the steps usually taken to build an LO1 Request.

Figure 5-1: Steps for Building an LO1 Request

Chart 5-3 lists examples of elements or indicators within state CSE systems to identify individuals as meeting the requirements for generating an LO1 Request.
CHART 5-3: EXAMPLES OF TRIGGERS FOR LO1 REQUESTS

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• An asset, address or employer for the NCP or CP is found in another state</td>
</tr>
<tr>
<td>• No support order has been issued or the NCP is not making payments</td>
</tr>
<tr>
<td>• Child support collections cannot be sent to the CP because the address is unknown</td>
</tr>
</tbody>
</table>

5.2.1.2 Processing an LO1 Request

Upon receiving an LO1 Request, automatically:

1. Submit the NCP or CP to sources for locate information. (Note: The state receiving the Request is not required to refer the case to the FPLS.)

2. Track the receipt of information to send a Response.

3. Build an LO1 Response as indicated in the next section.

4. States are not required to initiate a IV-D case and do not send a formal Acknowledgment. Some states have chosen to build a shell case for incorporation into their regular locate process. Other states create a file of LO1s and use this file to perform searches and return information to the requesting state.

5.2.1.3 Building an LO1 Response

The CSENet application supports states’ efforts to build LO1 Responses by using unique Action Reason codes to identify the information contained in the transaction. For example, if an address is obtained, the transaction could contain an Action Reason code of either LICAD (address found but not confirmed) or LSADR (address located and confirmed) with address information provided in the NCP Locate Data Block. If no information is found on the individual within a specific timeframe, the Action Reason code LUALL (no information found) is appropriate.

States should consider the response time of their state locate sources when determining when the Response can be sent.

Figure 5-2 shows the steps usually taken to build an LO1 Response.

Figure 5-2: Steps for Building an LO1 Response

- Identify Quick Locate case
- Identify new locate information
- Identify State to receive the response
- Map data, create transaction, and log fact that a locate was returned
Chart 5-4 lists examples of elements or indicators within state CSE systems that may be identified for use as triggers to automatically generate LO1 Responses.

<table>
<thead>
<tr>
<th>CHART 5-4: EXAMPLES OF TRIGGERS FOR LO1 RESPONSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>• Identifies that new locate information has been received</td>
</tr>
<tr>
<td>• Identifies an LO1 Request for which locate information has not been found within a specific timeframe</td>
</tr>
</tbody>
</table>

5.2.1.4 Processing an LO1 Response

Upon receiving an LO1 Response, a state should consider taking the following actions:

1. Locate the CSE case, NCP or CP to which the transaction refers.
2. Identify the information contained within the transaction.
3. Load the information into the appropriate area of the CSE system or, if no information was found, update the CSE system and refer to the caseworker as appropriate.
4. Log the receipt or non-receipt of the information.

Once a state has received and processed the LO1 Response, next steps of case processing are determined.

5.2.2 CASE STATUS INFORMATION (CSI)

The CSI Functional Type code was added to the CSENet application to provide states an automated method to obtain comprehensive case and order information from another state. It was developed primarily to supplement the information received from an FCR match. It is also used to share case and order information from another state and keep the data current.

FCR Query/Proactive Match Response Records contain the state’s FIPS code, case ID, NCP name and Social Security number (SSN). The FIPS codes and case IDs identify the case and provide direction to obtain further information if needed. Chart 5-5 provides a possible sequence of FCR and CSI transaction activity.

<table>
<thead>
<tr>
<th>CHART 5-5: SEQUENCE OF CASE STATUS INFORMATION ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>Step</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
</tr>
<tr>
<td>6.</td>
</tr>
</tbody>
</table>

5.2.2.1 Building a CSI Request

Upon receiving a participant match from the FCR or if a state has an open interstate case, but needs updated information from the other state, the state may query the other state using the CSI Request. A CSI Request can be generated in an automated fashion or initiated by a caseworker.

Before initiating a CSI Request, states may want to evaluate whether additional data would facilitate processing of the case. During the development of the Transaction Functional Matrix (TFM), there was consensus that, when automating CSI Requests, criteria should be established to eliminate broadcasting transactions.

When automating CSI Requests, states may consider eliminating cases such as:

- A known interstate case with the state matched by the FCR
- Cases that have a verified NCP address and/or employer
- Cases that are not delinquent
- Cases with deceased NCPs

Figure 5-3 shows the steps usually taken to build a CSI Request.
Figure 5-3: Steps for Building a CSI Request

- Identify the matching case
- Identify the State to receive the request
- Map data and create transaction
- Update case history log as appropriate

5.2.2.2 Processing a CSI Request

Upon receiving a CSI Request, states should automatically build a CSI Response as indicated in the next section.

5.2.2.3 Building a CSI Response

Because CSI Responses include extensive case and order information, these transactions must be automated. There should be no manual intervention when generating a CSI Response.

Figure 5-4 shows the steps usually taken to build a CSI Response.

Figure 5-4: Steps for Building a CSI Response

- Identify the matching case
- Map data including all case and order data and create transaction
- If a match is not found, build a response so indicating
- Update case history log as appropriate

5.2.2.4 Processing a CSI Response

Once a Response is received, the initiating state can then determine the next case-processing action. Upon receiving a Response, states should at a minimum:

1. Match the information to the existing CSE case
2. Load the information into the appropriate area of the CSE system or, if no information was found, process as appropriate
3. Update the case history log as appropriate

Once a state has received and processed the CSI Response, next steps of case processing are determined.
5.2.3 ENFORCEMENT (ENF)

The ENF Functional Type code supports a variety of enforcement actions for interstate cases. Chart 5-6 provides a possible sequence of events that would result in the generation of an enforcement transaction.

<table>
<thead>
<tr>
<th>CHART 5-6: SEQUENCE OF ENFORCEMENT ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
</tr>
<tr>
<td>6.</td>
</tr>
<tr>
<td>7.</td>
</tr>
</tbody>
</table>

5.2.3.1 Building an ENF Request

Once a state has determined that interstate enforcement action is necessary, it generates an ENF Request to that state. Figure 5-5 shows the steps usually taken to build an ENF Request.

Figure 5-5: Steps for Building an ENF Request

Elements or indicators within state CSE systems may be identified for use as triggers to automatically generate ENF transactions. An example of a trigger for an ENF transaction is when the NCP lives in another state and stops making support payments.
5.2.3.2 Processing an ENF Request

Upon receiving an ENF Request:

1. Build a new CSE case, if appropriate.

2. Send an Acknowledgment advising the requesting state where the case was sent and whether the information is complete or further information is necessary for the next step of case processing.

3. Process the case and use ENF transactions to provide status information/outcome to the initiating state.

5.2.3.3 Building an ENF Response

Figure 5-6 shows the steps usually taken to build an ENF Response.

![Figure 5-6: Steps for Building an ENF Response](image)

Chart 5-7 lists examples of elements or indicators within state CSE systems that can be identified for use as triggers to automatically generate ENF Responses.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contempt proceeding begun or a hearing has been scheduled</td>
</tr>
<tr>
<td>Identifies that a requested enforcement action or activity on an interstate case has been completed</td>
</tr>
</tbody>
</table>

5.2.3.4 Processing an ENF Response

Upon receiving an ENF Response:

1. Locate the case to which the ENF transaction refers.

2. Load the information into the CSE system, update the case history log, and refer to the caseworker as appropriate.

3. Determine the next case-processing action.
5.2.4 MANAGING STATE CASES (MSC)

The MSC Functional Type code supports many of the requirements that are not addressed by other Functional Type codes. MSC transactions can be used to communicate a variety of actions, including ongoing case activities, status update requests and responses and notification of hearing dates.

One of the business activities MSC transactions exchange is case closure. Questions have been raised on the use of these transactions (MSC P GSC02 through MSC P GSC18) because of the diversity of state CSE systems and the differing structure of cases. Whatever the case structure, the business activity remains the same — interstate services are no longer needed.

Standardization of transactions has been identified as essential for conducting interstate business, as well as to increase automation. It is very important to follow the business usage rules outlined in the TFM for MSC transactions, so that all states understand what is being provided or expected when these transactions are received. Chart 5-8 provides a possible sequence of MSC activity.

<table>
<thead>
<tr>
<th>CHART 5-8: SEQUENCE OF MANAGING STATE CASES ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
</tr>
</tbody>
</table>

5.2.4.1 Building an MSC Request

A MSC Request can either be automatically generated by the CSE system or manually initiated by the caseworker. For example, the MSC R GRUPD transaction (used to request the current status) generally would need to be worker initiated. Figure 5-7 shows the steps usually taken to build an MSC Request.
5.2.4.2 Processing a MSC Request

Upon receiving a MSC Request:

1. Match it to an existing CSE case or determine action needed to provide information or services as requested.

2. Update the case history log as appropriate.

3. Act upon the Request.

4. If appropriate, automatically provide information to the other state as needed.

5.2.4.3 Building an MSC Response

Typically, a Response is used subsequent to a Request being received from another state. However, a MSC Response can also be used to provide information or relay an activity that has occurred in an ongoing case. Figure 5-8 shows the steps usually taken to build a MSC Response.

5.2.4.4 Processing an MSC Response

Upon receiving a Response:

1. Match it to an existing CSE case, and then determine the action needed to provide information or services as requested.

2. Update the case history log as appropriate.
3. Automatically provide information to the other state as needed.

5.2.5 PATERNITY (PAT)

The PAT Functional Type code supports many of the actions required to establish paternity in interstate cases. Chart 5-9 provides a possible sequence of paternity activity.

<table>
<thead>
<tr>
<th>CHART 5-9: SEQUENCE OF PATERNITY ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
</tr>
<tr>
<td>6.</td>
</tr>
</tbody>
</table>

5.2.5.1 Building a PAT Request

After determining that long-arm processing is inappropriate or has been unsuccessful, the initiating state identifies the state with jurisdiction to establish paternity and generates a PAT Request to that state. Figure 5-9 shows the steps usually taken to build a PAT Request.

Figure 5-9: Steps for Building a PAT Request

Identify the child needing paternity establishment ➔ Identify the State to receive the request ➔ Map data and create transaction ➔ Update case history log as appropriate

Chart 5-10 lists examples of elements or indicators within state CSE systems that may be identified for use as triggers to automatically generate PAT transactions.
CHART 5-10: EXAMPLES OF TRIGGERS FOR PAT REQUESTS

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Identifies the child needing paternity establishment and the NCP lives out of state</td>
</tr>
<tr>
<td>• Indicates that long-arm processing is inappropriate or has been unsuccessful</td>
</tr>
</tbody>
</table>

5.2.5.2 Processing a PAT Request

Upon receiving a PAT Request:

1. Build a new CSE case or update an existing case, as appropriate.

2. If a new case is built, send an Acknowledgment advising the jurisdiction, e.g., county, to which the case was sent and whether the information is complete or further information is necessary for the next step of case processing.

3. Process the case and use PAT transactions to communicate with and provide status information and outcome to the initiating state.

5.2.5.3 Building a PAT Response

Figure 5-10 shows the steps usually taken to build a PAT Response.

Figure 5-10: Steps for Building a PAT Response

5.2.5.4 Processing a PAT Response

Upon receiving a PAT Response:

1. Locate the CSE case to which the transaction refers.

2. Load the information into the appropriate area of the CSE system, update the case history log or refer to the caseworker, as appropriate.

Once a state has received and processed the PAT Response, next steps of case processing are determined.
5.2.6 ESTABLISHMENT (EST)

The EST Functional Type code supports interstate establishment of support orders. [The addition of the new EST P SRPAT transaction supports a simultaneous request for establishment of paternity and support.] Chart 5-11 illustrates a possible sequence of activities for support establishment.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The initiating state identifies a case that needs interstate establishment of a support order [or a combination of establishment of paternity and support order].</td>
</tr>
<tr>
<td>2.</td>
<td>The initiating state sends an EST Request.</td>
</tr>
<tr>
<td>3.</td>
<td>The responding state receives the Request and builds a new case, as appropriate.</td>
</tr>
<tr>
<td>4.</td>
<td>The responding state sends an Acknowledgment advising where the case was sent and whether the information is complete or further information is necessary for the next step of case processing.</td>
</tr>
<tr>
<td>5.</td>
<td>The initiating state receives the Acknowledgment and processes it.</td>
</tr>
<tr>
<td>6.</td>
<td>The responding state processes the case and uses EST Responses to provide status information and outcome to the initiating state.</td>
</tr>
</tbody>
</table>

5.2.6.1 Building an EST Request

After identifying a case that needs support, [or both paternity and support], established by another state, the initiating state identifies the other state and generates an EST Request to that state. Figure 5-11 shows the steps usually taken to build an EST Request.

Figure 5-11: Steps for Building an EST Request

5.2.6.2 Processing an EST Request

Upon receiving an EST Request:

1. Build a new CSE case, if appropriate.
2. Send an Acknowledgment advising the case number, FIPS code, etc. If additional information is required, send a transaction to the other state advising it of this fact.

3. Process the case and use EST transactions to provide status information and outcome to the initiating state.

5.2.6.3 Building an EST Response

After the responding state identifies an establishment activity that needs to be communicated to the initiating state, the generation of a transaction may be automated. Figure 5-12 shows the steps usually taken to build an EST Response.

Figure 5-12: Steps for Building an EST Response

| Identify the case with support or paternity activity | Identify the State to receive the response | Map data and create transaction | Update case history log as appropriate |

5.2.6.4 Processing an EST Response

Upon receiving a Response:

1. Locate the CSE case to which the transaction refers.

2. Load the information into the case, update the history log and refer to the caseworker, if appropriate.

Once a state has received and processed the EST Response, determine the next case-processing action.

5.2.7 COLLECTIONS (COL)

The COL Functional Type code is used to notify another state that an interstate case has been submitted for tax offset and when a tax intercept has been received and disbursed.

There are two valid COL transactions, [COL P CISUB] and COL P CITAX, as identified in the Valid Transactions Table. Chart 5-12 provides a possible sequence of activities for the COL transaction.
Chart 5-12: Sequence of Collections Activity

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Initiating state [submits an interstate case for offset or] receives tax intercept money or an IRS intercept adjustment notice.</td>
</tr>
<tr>
<td>2.</td>
<td>Initiating state sends the COL transaction.</td>
</tr>
<tr>
<td>3.</td>
<td>Responding state receives the COL transaction and processes [to update the case, including] account adjustment.</td>
</tr>
</tbody>
</table>

5.2.7.1 Building a COL Transaction

Building a COL transaction should be automated based upon the submittal of an interstate case for offset or upon the receipt/disbursement of a federal or state tax offset payment. Figure 5-13 shows the steps usually taken to build a COL transaction.

Figure 5-13: Steps for Building a COL Transaction

![Steps for Building a COL Transaction](image)

Chart 5-13 lists examples of elements or indicators within state CSE systems that can be identified for use as triggers to automatically generate the COL transactions.

Chart 5-13: Examples of Triggers for COL Transactions

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Identifies an interstate case that has been submitted for tax offset or for which money was received from a federal or state tax offset that has been disbursed on an interstate case.</td>
</tr>
<tr>
<td>- Identifies when a negative (or other) adjustment of the original offset is received.</td>
</tr>
</tbody>
</table>

5.2.7.2 Processing a COL Transaction

Upon receiving a COL transaction:

1. Locate the CSE case to which the transaction refers.
2. Identify the information contained within the transaction.
3. Process and update the case or account as appropriate.

4. Update the case history log as appropriate.

5.2.8 ACKNOWLEDGMENTS

Acknowledgment transactions support the federal requirement in the Code of Federal Regulations 45 CFR at 303.7(a)(2). This section of the CFR requires the state receiving an interstate referral to acknowledge its receipt and provide information to the sending state, such as the case number and where the case was sent for action. Acknowledgments are also used to satisfy the CFR requirements that a responding state advise the initiating state whether there is additional information needed to process the case or whether the case referral is complete.

The TFM provides guidance on the specific use and processing of Acknowledgment transactions. Due to the diversity in state laws and policies, states need to consider when Acknowledgments are to be generated and the actions required, if any, when an Acknowledgment is received.

5.2.8.1 Building an Acknowledgment Transaction

States are strongly encouraged to automate the building of Acknowledgment transactions. For example, the CSE system can be programmed to automatically generate an Acknowledgment when a new responding interstate case is built. Figure 5-14 illustrates possible steps to build an Acknowledgment.

Figure 5-14: Steps for Building an Acknowledgment

| Upon receipt of a case referral, determine if information is complete | Build a case or process the case referral as appropriate | Map data and create transaction | Update case history log as appropriate |

Chart 5-14 lists examples of elements or indicators within state CSE systems that can be identified for use as triggers to automatically generate Acknowledgments.

| CHART 5-14: EXAMPLES OF TRIGGERS FOR ACKNOWLEDGMENTS |
| Description |
| • Identifies that a responding interstate case has been added to the CSE system |
| • Identifies whether the referral is complete or incomplete |
5.2.8.2 Processing an Acknowledgment Transaction

Upon receiving the Acknowledgment:

1. Identify whether additional information is requested.
2. Provide the information requested.
3. Refer to a caseworker as appropriate and/or take the next case-processing action.
4. Update the case history log, as appropriate.

5.3 Summary

The goal of the CSENet application is to expedite interstate case processing and the collection of child support payments by exchanging automated transactions. OCSE provides a variety of resource materials to assist states in facilitating communications and conducting interstate IV-D case activities. This document, along with the Transaction Functional Matrix (Appendix D), Data Block Record Layout (Appendix C), and Valid Transactions Table (Appendix B) and the Data Element Descriptions and Requirements (Appendix F) should be used by states to enhance automated transaction processing.
6. TECHNICAL SUPPORT FOR STATES

The EUS and software teams work in tandem to provide a wide range of technical and functional support to the CSE community. This section briefly discusses the various areas of support and how they may be used.

6.1 Software Team

The software team performs various activities to ensure that CSENet is operational on a daily basis. The team is responsible for monitoring and managing the application and providing additional support to meet states’ needs.

6.1.1 MONITORING

The team monitors the daily data exchange activities of CSENet, to ensure there are no unusual occurrences between CSE systems and the CSENet server. An unusual activity can be low-impact – affecting only one state – or high impact – affecting more than one state. Regardless of the extent of impact, the software team acts promptly to address and resolve the issue.

6.1.2 ADDITIONAL SOFTWARE SUPPORT

The team provides additional support to the states by:

- Modifying the Test Deck to meet a state’s particular need
- Customizing a special test per a state’s specific request
- Responding to states’ programming needs
- Managing the Exchange Agreement communications matrix
- Answering various questions about the application

6.2 End User Support Team

The technical representatives on the EUS team are the states’ contacts for CSENet questions and issues. The team works in concert with the software team to provide technical and functional support. Support from the team is varied and includes, for example:

- Analyzing transaction files and identifying errors
- Coordinating testing and assisting states in their development efforts
- Enabling communications between states to exchange specified Functional Type codes
- Providing expertise, analysis and information in a wide range of technical and business usage areas
• Resolving technical issues related to exchange agreements
• Generating ad hoc reports on an as needed basis

6.2.1 STATES’ FUNCTIONAL DEVELOPMENT

While the majority of states and territories are currently fully functional; the remaining jurisdictions are progressing toward full functionality. The EUS team works closely with the states, assisting the user community in their development efforts by:

• Coordinating testing for states’ programming new Functional Type codes, analyzing test files and providing feedback concerning errors
• Clarifying the use of valid data blocks and elements in the Data Block Record Layout
• Providing guidance and information concerning transaction business usage and interpreting the TFM
• Responding to questions concerning the Valid Transactions Table and explaining allowable valid transaction combinations
• Monitoring new Functional Type codes once they are moved into production

6.2.2 INFORMATIONAL SUPPORT TO STATES

In addition to the daily tasks surrounding testing, transaction usage and error issues, the EUS team is actively involved in developing and disseminating technical and functional information to the states by providing the following support:

• Maintaining and providing statistics to assist states in their planning and development efforts
• Providing business guidance on transaction usage
• Conducting data analysis for software modifications and enhancements
• Coordinating teleconferencing and preparing resource material for the CSENet community
• Providing information as states implement CSENet Releases into production

6.2.3 FILE ANALYSIS AND ERROR IDENTIFICATION

A variety of internal utilities are available to assist the EUS team in performing file analysis and identifying errors. These tools are used by the team to provide timely and detailed information to states in production and development.

The EUS team analyzes the Validation and Transaction Error reports on a daily basis. The Transaction Error Report is an invaluable tool used to identify the validity rate of transactions sent by each state and to target transactions that merit further review and analysis. A sample of the Validation Report and Transaction Error Report can be found in Part 3, CSENet Application Suite, Sections 3.1.2.1 and 3.1.2.2, respectively.
6.3 State Testing

States have the option of testing using loopback testing or testing with other states. Additional information on the types of testing available is found in Part 3, CSENet Application Suite, Section 3.1.3, State Testing Tools. To schedule testing, contact your state’s technical representative on the EUS team.

6.4 Service Desk

Service Desk support is available during the business hours of 8:00 am to 5:00 pm ET. The EUS technical representatives, who staff the Service Desk, may be reached at 1-800-258-2736 or CSENet.2000@lmco.com.

When a state requests assistance through the Service Desk, a service request is initiated detailing the issue or request. Often the CSENet teams combine their efforts to resolve a state’s issue. Teleconferences may be coordinated with the end-user community to obtain additional information and provide support that is more readily addressed in a two-way dialog. Most service requests are resolved within a 24-hour period.