

Detailed System Design

June 13, 2014
Version 1.12

Department of Health and Human Services
Administration for Children and Families

Office of Child Support Enforcement

Detailed System Design

Version 1.12 06/13/2014 2

REVISION HISTORY

Version Date Description of Change Approval

1.0 12/18/2006 Initial Document Rama K.

1.0 01/25/2007 Created Section 2, J2EE
standards and updated
documentation after team
review

Chris M.

1.0 02/05/2007 Chris M.

1.1 02/08/2007 Chris M.

1.2 03/01/2007 Chris M.

1.3 03/29/2007 Format and Fonts, Removed
embedded documents,
created tables and added
into Appendix A, B, C.

Duke T.

1.4 04/23/2007 Create new sections
4.1,2,3,4 Added Document
Generation Cache
Management, Exception
Processing Framework

Chris M.

1.5 01/22/2008 Added Use Cases narratives
to Section 4, Added text to
Sections 2, 3 and 7

Ron D.

1.6-1.9 12/26/2013 New Format TM

1.10 - 1.11 03/17/2014 Quality Assurance CP

1.12 06/13/2014 Quality Assurance CP

Detailed System Design

Version 1.12 06/13/2014 3

 Table of Contents

1 Document Overview... 7

2 Scope of Document ... 7
2.1 Audience .. 7
2.2 Related Documentation .. 7
2.3 Definitions and Acronyms ... 8
2.4 Document Conventions .. 8

3 System Design ... 9
3.1 Description ... 9
3.2 System Architecture ... 12
3.2.1 Deployment Architecture View ... 13

4 Software Design .. 17
4.1 Design View... 19
4.1.1 Client-Side Data Representation .. 19
4.2 Design Model ... 20
4.2.1 Service to Worker .. 21
4.3 Controller ... 22
4.3.1 Managing Commands with a Controller .. 22
4.4 J2EE Application Tier.. 29
4.5 J2EE Design and Development ... 29
4.5.1 Relational Persistence .. 29
4.5.2 Package Structure (Java Classes) ... 30
4.5.3 Web Service Generation .. 32
4.6 Java Conventions and Standards .. 34
4.6.1 Naming Conventions ... 34
4.6.2 Java Source Files.. 50
4.6.3 Program Statements ... 53
4.6.4 Layout and Comments ... 66
4.7 Exception Handling ... 85
4.7.1 Error Messages... 85
4.7.2 Exception Handling & Logging Standards .. 86
4.8 COTS Packages ... 87
4.9 Components ... 87
4.9.1 Component ID and Component Name ... 88
4.10 Interfaces .. 88

5 Detailed Design ... 89
5.1 Case Management .. 91
5.1.1 MTS Use Case: Case Consolidation .. 92
5.1.2 MTS Use Case: Case Information Request ... 93
5.1.3 MTS Use Case: Case Intake .. 94
5.1.4 MTS Use Case: Case Management.. 95
5.1.5 MTS Use Case: Case Quick Locate ... 96

Detailed System Design

Version 1.12 06/13/2014 4

5.1.6 MTS Use Case: Case Referral Process .. 97
5.1.7 MTS Use Case: Participant Demographics.. 98
5.1.8 MTS Use Case: Participant Income and Assets ... 99
5.1.9 MTS Use Case: Participant Address .. 100
5.2 Locate Management ... 101
5.2.1 MTS Use Case: Locate .. 102
5.3 Paternity ... 103
5.3.1 MTS Use Case: Paternity Data Entry .. 104
5.3.2 MTS Use Case: Paternity Documents.. 105
5.3.3 MTS Use Case: Paternity Facilitation.. 106
5.3.4 MTS Use Case: Paternity Genetic Testing .. 107
5.3.5 MTS Use Case: Paternity Stipulation .. 108
5.4 Order Establishment... 110
5.4.1 MTS Use Case: Order Data Entry ... 111
5.4.2 MTS Use Case: Order Facilitation ... 112
5.4.3 MTS Use Case: Order Stipulation ... 113
5.4.4 MTS Use Case: Order Documents ... 114
5.4.5 MTS Use Case: Order Monitor .. 116
5.5 Enforcement ... 117
5.5.1 MTS Use Case: Enforcement... 118
5.5.2 MTS Use Case: Enforcement Monitor .. 119
5.6 Financial Management ... 120
5.6.1 MTS Use Case: Financial Payment Posting .. 122
5.6.2 MTS Use Case: Account Charging .. 123
5.6.3 MTS Use Case: Financial Delinquency Monitor ... 124
5.6.4 MTS Use Case: Monthly NCP Billing Notices ... 125
5.6.5 MTS Use Case: Financial Account .. 126
5.6.6 MTS Use Case: Financial Account Summary ... 127
5.6.7 MTS Use Case: Collection Posting.. 128
5.6.8 MTS Use Case: Deposit Processing .. 129
5.6.9 MTS Use Case: Financial Pass-through .. 130
5.6.10 MTS Use Case: Financial Distribution .. 131
5.6.11 MTS Use Case: Financial Disbursements.. 133
5.6.12 MTS Use Case: Bank File Extraction & Recon Matching .. 134
5.6.13 MTS Use Case: Bank Reconciliation Statement ... 136
5.6.14 MTS Use Case: Monthly Check Escheatment ... 138
5.6.15 MTS Use Case: Transaction Adjustments ... 139
5.6.16 MTS Use Case: Monthly Account History .. 140
5.6.17 MTS Use Case: Quarterly Payment History Notices ... 141
5.7 Application Management ... 143
5.7.1 MTS Use Case: Application jBPM Framework .. 144
5.7.2 MTS Use Case: Application Cache ... 145
5.7.3 MTS Use Case: Application Data Validation .. 146
5.7.4 MTS Use Case: Application Exception Processing ... 147
5.7.5 MTS Use Case: Application Scheduled Process ... 148
5.7.6 MTS Use Case: UI Validators ... 150

Detailed System Design

Version 1.12 06/13/2014 5

5.7.7 MTS Use Case: Reporting ... 151
5.8 Document Generation .. 152
5.8.1 MTS Use Case: Document Data Merge... 154
5.8.2 MTS Use Case: Document Mapping ... 154
5.8.3 MTS Use Case: Document Print Management .. 155
5.8.4 MTS Use Case: Document Generation – Admin Templates 155
5.8.5 MTS Use Case: Disbursement Check Printing .. 156
5.9 Security and Administration .. 157
5.9.1 MTS Use Case: Security Administration ... 158
5.9.2 MTS Use Case: User Access ... 159
5.9.3 MTS Use Case: User Calendar .. 160
5.9.4 MTS Use Case: User Tickler & Worklists .. 161
5.9.5 MTS Use Case: System Configuration .. 163
5.9.6 MTS Use Case: Security Privileges ... 165
5.10 Common Functions .. 166
5.10.1 MTS Use Case: Common Monitor .. 167
5.10.2 MTS Use Case: Member Match .. 175
5.10.3 MTS Use Case: Create Financial Accounts ... 177
5.10.4 MTS Use Case: Create Debt Accounts .. 178
5.11 Third Party Data Management ... 179
5.11.1 MTS Use Case: Third Party Maintenance & Configuration .. 181
5.11.2 MTS Use Case: Third Party Search ... 182
5.11.3 MTS Use Case: Third Party Agency ... 183
5.11.4 MTS Use Case: Third Party Attorney .. 184
5.11.5 MTS Use Case: Third Party Correctional Facility ... 185
5.11.6 MTS Use Case: Third Party Court ... 186
5.11.7 MTS Use Case: Third Party Employer .. 187
5.11.8 MTS Use Case: Third Party Financial Institution.. 188
5.11.9 MTS Use Case: Third Party Genetic Testing Lab ... 189
5.11.10 MTS Use Case: Third Party Health Care Provider .. 190
5.11.11 MTS Use Case: Third Party Health Insurance Provider .. 191
5.11.12 MTS Use Case: Third Party Law Enforcement ... 191
5.11.13 MTS Use Case: Third Party Probation Parole Officer... 192
5.11.14 MTS Use Case: Third Party Registered Agent .. 193
5.11.15 MTS Use Case: Third Party School ... 193
5.11.16 MTS Use Case: Third Party TCSE Office ... 194

6 Data Design ... 195
6.1 Database Standards .. 195
6.2 Database Design Based on Business Functions ... 195
6.3 Database Table Layouts and Relationships ... 195

7 System Performance .. 196
7.1 Operating System Clustering ... 196
7.2 Application Server Clustering .. 197
7.3 Database Server Clustering .. 197

Detailed System Design

Version 1.12 06/13/2014 6

8 Appendices .. 198

Appendix A – Acronyms .. 198

Appendix B – References.. 199

Appendix C – IT Bill of Materials (BOM) .. 200

Detailed System Design

Version 1.12 06/13/2014 7

1 Document Overview

This document is the technical blueprint developed by the Office of Child Support
Enforcement (OCSE), Division of State and Tribal Systems technical team for the Model
Tribal System (MTS). The scope of this document is limited to design elements for
MTS. The foundation for the current design documentation is based on the MTS
Software Requirements Specification (SRS) and General System Design (GSD) and is
intended to satisfy all the customer requirements, objectives, and expectations.

Systems design and development standards are defined and will be used during the
implementation phase. Coding and syntax requirements are outlined with examples to
promote code uniformity throughout the application.

Specific use case instances contain the low level design for all business processes defined
in the SRS. Each use case is an embedded document with specific references to
supporting design documentation for the specific design process.

2 Scope of Document

Please refer to the separate table, MTS IT Bill of Materials, in Appendix C.

2.1 Audience

This document is intended for the following audience:

• Designers and Developers.

• Technical Management Team.

• Business Team.
This document assumes that the reader is familiar with MTS requirements.

The skills required to understand this document are a familiarity with the following
techniques, standards, and technologies:

• JBoss Application Server 4.0.5.

• jBPM.

• Adobe Flex 2.

• MySQL Server and Administration.

• Apache Web Server.

• Java 2 Enterprise Edition (J2EE) 1.4.

• Apache Web Services.

2.2 Related Documentation

Other system documentation for this system should include:

Detailed System Design

Version 1.12 06/13/2014 8

Item Title Author Location

Use Cases MTS_UC_<Use Case
Name>

MTS Project Team Embedded within existing
documentation

Software
Architecture
Document

MTS Architecture Design

MTS Project Team Embedded within existing
documentation

J2EE design
Checklist

MTS_DES_checklist.doc MTS Project Team

Reports
Design
Checklist

MTS_SystemDesignCheck
list_Reports.doc

MTS Project Team

Report
Design
Standards

MTS_Reports_Design_Sta
ndards.doc

MTS Project Team

2.3 Definitions and Acronyms

Refer to Appendix A, Glossary and Acronyms.

2.4 Document Conventions

Item Format Convention Sample

Keys pressed on the Keyboard

Enclosed in < > <Enter> or <Ctrl+F>

Variable or text that is replaced
with the other text

Enclosed in square brackets [FIELD_NAME]

Detailed System Design

Version 1.12 06/13/2014 9

3 System Design
3.1 Description

The MTS application provides an integrated environment for tribal child support
organizations responsible for managing child support cases. MTS is a new application
with business functionality that will allow for efficient management of tribal child
support enforcement cases. The system is being developed as a model for tribes to use as
a baseline system that can be customized based on specific tribal requirements. Each
instance of the system software is intended to support only one tribal organization.

The system performs the following high-level functions:

• It contains all data needed to manage a case, including records of payments and
collections made by tribal financial organizations.

• It accepts applications for child support services and sets up child support cases.

• It locates participants in the case.

• It supports the establishment of paternity and the establishment of support orders.

• It supports the enforcement of child support orders.

• It supports the collection of payments, distribution, and disbursement of
payments.

• The system supports the production of all required federal and tribal reports.

• The system ensures the privacy of all data.

The following are business processes that comprise functional areas of the MTS system
design:

Case Intake and Update

Case Initiation and Update is the process of responding to a request for services. This
includes opening and/or reopening a case and assessing and determining the next
appropriate action on a case. It also includes entering data on a case, either at intake or at
any later time in the life of the case.

Locate

Locate is the process of gathering information concerning the physical location and
verified mailing address of a Custodial Parent (CP) or Noncustodial Parent (NCP). It
also includes information on the parties’ employer(s), income, or assets. Locate
information is used to support the efficient collection of child support.

Paternity Establishment
Paternity Establishment is the process of obtaining a voluntary acknowledgement of or a
stipulation to paternity. It also includes the legal processes needed to obtain a finding of
paternity by a court.

Detailed System Design

Version 1.12 06/13/2014 10

Order Establishment
Order Establishment is the process of obtaining a voluntary stipulation to child support
by an NCP or conducting the legal processes needed to obtain a child support order from
a court. It also includes the Review and Adjustment process.

Enforcement
Enforcement is any action that may be taken to ensure collection of a child support
obligation. Enforcement includes income withholding, license suspension, liens on
property, and various other tribal, state and federal remedies.

Case Management
Case Management includes numerous actions affecting the status or organization of an
established case. It includes redirecting payments, consolidating a case, transferring a
case, and closing a case. It also includes monitoring responses to actions on a case and
determining the next action that should be taken on a case.

Financial Management
Financial Management includes all the processes involve in collecting and paying out
child support monies. The system must conduct these functions in accordance with
accepted accounting practices. The functions include:

Obligation Management
Obligation Management is the process of managing owed amounts, primarily
court ordered support (financial and non-financial) owed by the NCP, but also
including any judgments, fees, and other costs related to a child support case.

Collections

Collections is the process of receiving funds from the NCP and other payors, and
all functions related to recording and depositing monies paid by NCPs for child
support obligations.

Distribution

Distribution is the process of applying allocated collections to various debts and
obligations. This capability also determines how collections will be applied to the
obligor’s child support obligations.

Disbursement
Disbursement is the process of handling outbound payments to the appropriate
parties.

System Security and Administration
System Security and Administration provide for maintaining the security and privacy of
personal and financial data.

Detailed System Design

Version 1.12 06/13/2014 11

Security

The Security function will provide for restricting access to the MTS application and data
to only authorized users under controlled circumstances. It will provide for separation of
functions to ensure proper handling of financial accounts.

Administration

The Administration process provides for configuring the system to support a variety of
tribal child support enforcement (TCSE) programs, each with different needs and
different governing regulations. The system software will be extensively configurable at
and subsequent to installation. Configuring and reconfiguring the system should have a
minimum impact on program operations.

Reporting

Reporting includes extracting and abstracting system data to produce reports that ensure
the reliability of the system’s financial processes and the business effectiveness of the
child support program as a whole.

Detailed System Design

Version 1.12 06/13/2014 12

3.2 System Architecture

The MTS System Architecture document describes the operational structure of the
various components that comprise various MTS environments. It focuses on the
technological components of each environment and specifically describes the model
system solution and information system architecture. It describes the different layers in
the architecture for the MTS application (presentation tier, business tier, persistence tier
and data tier). Each layer has a façade/controller object.

This subsection presents a high-level view of the system solution and information system
architectures as well as the various deployment view architectures associated with:

• Development Configuration.

• UAT/Pre-Production Configuration.

• Production Configuration.

The information system architecture for MTS is depicted below:

Figure 2.1 – MTS Information System Architecture

Detailed System Design

Version 1.12 06/13/2014 13

The high-level system solution architecture for MTS is depicted below:

Figure 2.2 – MTS System Solution Architecture

The System Architecture document describes the architectural representation of the pilot
system including network architecture, logical and physical system architecture, use cases
to define the functional aspects, data relationships, and deployment view.

Track Document Name Location

 MTS_SystemAchitecture Alfresco System -> MTS ->
Design – Detail Design

3.2.1 Deployment Architecture View

The following subsection shows the deployment view of MTS for the various project-
specific deployments. These views show how the various executables and components
are mapped to the underlying OS and hardware platforms or computing nodes. It also
depicts system hardware and software deployment and installation. The following
deployments are depicted:

• Development Configuration.

• UAT/Pre-Production Configuration.

• Production Configuration.

Detailed System Design

Version 1.12 06/13/2014 14

Figure 2.3 – Development Environment

Figure 2.4 – UAT/Pre-Production Runtime Environment

The following are production configurations with variations on a clustered deployment.
A clustering scheme provides high availability, fault tolerance, and increased scalability
through the use of application servers. Workload management and request distribution is
achieved through load balancers which provide scalability. Each server component can
service any request from any management agent in any order.

The architectures below depict single server and multiple server vertical cluster
environments (multiple application server instances hosted on the same physical machine
[node]) and horizontal clusters (multiple physical machines [nodes]).

Detailed System Design

Version 1.12 06/13/2014 15

Figure 2.5 – Vertical Cluster Configuration (Single Server)

Figure 2.6 – Vertical Cluster Configuration (Multiple Servers)

Detailed System Design

Version 1.12 06/13/2014 16

Figure 2.7 – Horizontal Cluster Environment

The MTS application infrastructure tiers supported, including the Web Servers and the
Application Servers, will be highly available. The MySQL database can optionally be
deployed on a dedicated server.

Detailed System Design

Version 1.12 06/13/2014 17

4 Software Design
The software design is based on the Cairngorm framework which provides a Model View
Controller (MVC) model for Rich Internet Application (RIA) development. The
combination of Adobe Flex 2 and Flash Player provides a rich User Interface (UI)
presentation and allows for the creation of a scalable application using the J2EE
architecture for the application tier.

User presentation is displayed using the Adobe Flash Player within a standard browser.
Flex 2 is an application framework that consists of Multimedia XML (MXML), Action
Scripts (an ECMAScript-based scripting language), and a class library of UI components
to aid design and development. The Cairngorm framework is based on the MVC design
architecture. This architecture isolates data access and business logic from the UI and
data presentation interactions. This is accomplished by the use of a common controller
that performs actions and responds to events instantiated by the user that can make
changes to the model. The combination of Flex 2 and Cairngorm provides the necessary
tools and framework to create a highly scalable and flexible application. Figure 3.1
provides a diagram of all layers of the MTS application architecture.

Flex 2 user interface design is implemented based on the Cairngorm framework. The
Cairngorm Microarchitecture is a lightweight yet prescriptive framework for RIA
development.

Cairngorm Microarchitecture addresses the key areas in user interface design:

• Handling user interaction.

• Encapsulating business logic and server interactions.

• Managing state on the client.

The following design patterns are implemented in Cairngorm:

• Front Controller and Command patterns implement “Service to Worker”
microarchitecture for listening and responding to user requests.

• Business Delegate and Service Locator patterns interact so that the business logic
can be reused and also encapsulate it so that it establishes a clear contract between
client and server-side development teams.

• Value Object pattern from J2EE collaborates with the Model Locator pattern in
Cairngorm.

Detailed System Design

Version 1.12 06/13/2014 18

M
od

el
Vi

ew

ModelLocator

Co
nt

ro
lle

r

Cairngorm Event

FrontController

Array of
Contact VOs

Name – email@email.com
Name – email@email.com
Name – email@email.com
Name – email@email.com
Name – email@email.com
Name – email@email.com
Steven – cairn@gorm.com
Name – email@email.com
Name – email@email.com

ContactVO

Event and Data Payload are
passed together to Front Controller

Value Object

CMD
CMD

CMD

Form data is stored in a
Contact Value Object

ContactVO is data payload
for this Cairngorm Event

The Front Controller enlists
the appropriate command

Ap
pl

ic
at

io
n

Ti
er

Service

ServiceLocator

Service

Service

Service

Service

Service

Business
Delegate

Command updates Model

Service

IIS
Server

J2EE
Server

Linux
ServerResponse is sent back

to Business Delegate

Business Delegate relays
response back to command

Command delegates task

Updated: 11/23/2006 - Diagram by Evan Gifford (evan@usa.com) with special thanks to Steven Webster, Alex Uhlmann, Russell Munro, Jesse Warden, Dan Nielsen, Tom Chiverton and everyone on the flexcoders group – flexcoders.org

From ‘Developing Flex RIAs with Cairngorm Microarchitecture’ by Steven Webster
Copyright: Adobe.com - http://www.adobe.com/devnet/flex/articles/cairngorm_pt1.html

Business Delegate enlists the application-tier service and passes
references of the Command’s onResult and onFault handlers

FDS/AMF, SOAP, XML-RPC, AMFPHP or XML:80

My Contacts

 List of Contacts

EventBroadcaster

Data binding
updates view

 Cairngorm 2.0 Microarchitecture – Basic Server RPC

Add a Contact:

Add Contact
Click

Steven

cairn@gorm.com

The EventBroadcaster
dispatches this event to
the front controller

Model Object Model Object

Figure 3.1 – Cairngorm Microarchitecture

Detailed System Design

Version 1.12 06/13/2014 19

4.1 Design View
The component-based model eases the creation of Flex 2 applications. Pre-built
components included with Flex 2 can be used for user interface design, can extend
components to add new properties and methods, and can create new components. To
build an application using Flex 2, the user interface is defined using two types of visual
components: controls and containers.

Controls are user interface components that handle user interactions and display data that
users can manipulate directly through that control. Examples of controls are the
DataGrid and the TreeControl.

A container defines a region of the Flash Player drawing surface and controls the layout
for everything in the container, including other containers and controls. Examples of
containers are a data entry Form, a Box, and a Grid.

Flex components are extremely flexible and provide developers with a great deal of
control over the component’s appearance, the component’s reaction to user interactions,
the font and font size of any text included in the component, and the size of the
component in the application. Flex 2 components support the following characteristics:

• Events – Application or user actions that require a component response.

• Behaviors – Visible or audible changes to the component triggered by an
application or user action.

• Skins – Symbols that control a component’s appearance.

• Styles – Set of characteristics, such as font, font size, and text alignment.

• Size – Height and width of a component (all components have a default size).
The characteristics of the controls can be controlled at development time through MXML
or Cascading Style Sheets (CSS), or at runtime through the component’s ActionScript
API, including creating or destroying instances of a component based on application data
or user interaction.

4.1.1 Client-Side Data Representation

Client side data is represented using Value Objects. The value objects contain attributes
and are also used to exchange or transfer data between different tiers within the
application.

Whenever data is retrieved on the server-side business logic and transformed into a
collection of value objects representing, for example, a list of cases for a participant or
participants within a case, the same collection can be passed as value objects between the
J2EE tier and the UI tier.

These business objects that represent the data must be named as <valueobject>VO, where
valueobject is the data that represents the user’s view. Example: CaseVO is a data
structure that represents the Case Detail or Case screen.

Detailed System Design

Version 1.12 06/13/2014 20

All Value Objects in MTS application must extend the BaseVO (Base Value Object) and
implement the ValueObject, Comparable.

Example:
class org.dhhs.mtcse.ui.vo.CaseVO extends BaseVO implements
ValueObject, Comparable {

 public static var registered:Boolean =

 Object.registerClass("org.dhhs.mtcse.beans.CaseVOType", CaseVO);

 public var long:caseID;

 public var status:String;

 public var type:String;

 …

 …

 …

}

To allow Flex to map between client-side and server-side value objects, you must provide
some hints to the Flex server about the relationship between the classes. In Cairngorm,
you achieve this by advocating that each and every instance of a value object class
contains the following:

</>

This line ensures that a CaseVO class on the client maps to the Java class CaseVO.java
that resides in the package org.dhhs.mtcse.beans.CaseVOType on the server.

4.2 Design Model
Data binding allows two objects to act as a source and a destination. Changes to the
source object are reflected immediately in the destination object.

The Model Locator pattern strategy encourages the use of data binding so that view
components bind directly to the client-side state held in the single instance of the
ModelLocator class. In this way, whenever the model is updated in ModelLocator, all
view components binding to the model receive notifications (through the underlying data-
binding mechanism) and update themselves to render the new model on the client.

Cairngorm provides a marker interface for the Model Locator pattern, and in the MTS UI
we have a single class that implements this marker interface,
org.dhhs.mtcse.ui.model.ModelLocator.

Having all the attributes on the Model Locator pattern as static attributes ensures that the
Model Locator pattern is a simple implementation of a singleton.

Any ValueObject that you want to bind to a data control must be defined as an attribute
in the ModelLocator if changes to the model are to be reflected in the control.

Detailed System Design

Version 1.12 06/13/2014 21

4.2.1 Service to Worker

Consider the events in the MTS application for createCas” and closeCase etc. The
features map to events such as createCase, closeCase and so forth. Whenever a user
action indicates the desire to execute a feature, Cairngorm requires that you broadcast an
appropriate event.

In response to each event a feature is executed and these are called commands. Each and
every command exposes a single entry point, a method called execute(), which allows a
third party to invoke the command without understanding what the command
accomplishes. Often these commands are called worker classes because they are
responsible for actually carrying out the work behind the application.

MTS Login Command
package org.dhhs.mtcse.ui.commands

{

 import mx.rpc.events.ResultEvent;

 import com.adobe.cairngorm.business.Responder;

 import com.adobe.cairngorm.commands.Command;

 import mx.controls.Alert;

 import mx.rpc.events.ResultEvent;

 import com.adobe.cairngorm.control.CairngormEvent;

 import org.dhhs.mtcse.ui.business.LoginDelegate;

 import org.dhhs.mtcse.ui.control.LoginEvent;

 import org.dhhs.mtcse.ui.model.ModelLocator;

 import org.dhhs.mtcse.ui.vo.UserVO;

 public class LoginCommand implements Command, Responder

 {

private var model : ModelLocator = ModelLocator.getInstance();

 public function execute(event : CairngormEvent) : void

 {

 model.login.isPending = true;

 var delegate : LoginDelegate =

new LoginDelegate(this);

 var loginEvent : LoginEvent = LoginEvent(event);

 delegate.login(loginEvent.userVO);

 }

Detailed System Design

Version 1.12 06/13/2014 22

 public function onResult(event : * = null) : void

 {

 model.login.loginDate = new Date();

 model.login.userVO = UserVO(event);

 model.login.isPending = false;

model.workflowState =
ModelLocator.VIEWING_LOGGED_IN_SCREEN;

 }

 public function onFault(event : * = null) : void

 {

 model.login.statusMessage =

"Your username or password was wrong, please try
again.";

 model.login.isPending = false;

 Alert.show("Invalid Login!");

 }

 }

}

In Cairngorm, this interface simply enforces the requirement that the command have a
method called execute() that can act as its entry point. This allows Cairngorm to
execute each and every command without caring about what the command actually does.

4.3 Controller

The Front Controller architectural design pattern centralizes an application's request
processing and view selection in a single component. The Front Controller receives
requests from the client (View) and dispatches them to the application model. This single
point of dispatch makes the Front Controller a logical place for such global facilities as
security and logging. The Front Controller also selects and formats the next client view.
The controller is also an application of the Mediator pattern, because it decouples view
components from one another.

4.3.1 Managing Commands with a Controller

Cairngorm introduces the Front Controller pattern as a single point of entry for all
Cairngorm events.

All event constants must be defined in the EventConstants action script file.
package org.dhhs.mtcse.ui.commands

{

Detailed System Design

Version 1.12 06/13/2014 23

 /**

 * String constants for all application events.

 * @author Rama Kodumagulla

 *

 */

 public class EventConstants

 {

 /*

 * Constants for Cairngorm Events to disptch commands

 */

public static var EVENT_SEARCH_ROLE:String =
"serachRoleEvent";

 public static var EVENT_SAVE_ROLE:String = "saveRoleEvent";

 public static var EVENT_ADD_ROLE:String = "addRoleEvent";

public static var EVENT_DELETE_ROLE:String =
"deleteRoleEvent";

public static var EVENT_SEARCH_USER:String =
"searchUserEvent";

 public static var EVENT_SAVE_USER:String = "saveUserEvent";

 public static var EVENT_ADD_USER:String = "addUserEvent";

public static var EVENT_DELETE_USER:String =
"deleteUserEvent";

public static const EVENT_GETMENUS : String = "getMenusEvent";

public static const CREATE_MENU :String = "createMenuEvent";

 public static const SAVE_MENU :String = "saveMenuEvent";

public static const DELETE_MENU :String = "deleteMenuEvent";

 }

}

This is a best-practice approach of naming all events as constants on the
FrontController instance.
The code below defines the “Front Controller” pattern in the MTS application. The
constructor ensures that when the application does create the controller, it creates it with
the full knowledge of which commands it can delegate work to, depending on which
events it hears being broadcast.
package org.dhhs.mtcse.ui.control

{

 import com.adobe.cairngorm.control.FrontController;

Detailed System Design

Version 1.12 06/13/2014 24

 import org.dhhs.mtcse.ui.commands.*;

 import mx.events.MenuEvent;

 import org.dhhs.mtcse.ui.constants.ApplicationConstants;

 public class Controller extends FrontController

 {

 public function Controller()

 {

 // Login

 addCommand(LoginEvent.EVENT_LOGIN, LoginCommand);

 // Menu Maintenance

addCommand(EventConstants.EVENT_GETMENUS, MenuCommand);

 addCommand(EventConstants.SAVE_MENU, MenuCommand);

 addCommand(EventConstants.CREATE_MENU, MenuCommand);

 addCommand(EventConstants.DELETE_MENU, MenuCommand);

 //Role Maintenance

addCommand(SearchRoleEvent.SEARCH_ROLE,
SearchRoleCommand);

addCommand(SaveRoleEvent.SAVE_ROLE, SaveRoleCommand);

 addCommand(AddRoleEvent.ADD_ROLE, SaveRoleCommand);

addCommand(DeleteRoleEvent.DELETE_ROLE, SaveRoleCommand
);

 //User Maintenance

addCommand(SearchUserEvent.SEARCH_USER,
SearchUserCommand);

addCommand(SaveUserEvent.SAVE_USER, SaveUserCommand);

 addCommand(AddUserEvent.ADD_USER, SaveUserCommand);

addCommand(DeleteUserEvent.DELETE_USER, SaveUserCommand
);

 }

 }

}

By extending the base FrontController class in the Cairngorm framework, the
addCommand() method of the FrontController class registers events with
corresponding command classes. The underlying Cairngorm architecture does the rest of
the work. It simply broadcasts the appropriate event from anywhere in your application
and Cairngorm ensures that the relevant command is invoked.

Detailed System Design

Version 1.12 06/13/2014 25

Broadcasting Events

Cairngorm provides a singleton EventBroadcaster class that collaborates with the
FrontController class. To dispatch Cairngorm events, dispatch them with the
Cairngorm Event Broadcaster.

The following example dispatches the event from the Login panel to the Command
pattern:
public function loginUser() : void

{

var userVO : UserVO = new UserVO();

 userVO.userID = userID.text;

 userVO.password = password.text;

 var event : LoginEvent = new LoginEvent(userVO);

 CairngormEventDispatcher.getInstance().dispatchEvent(event);

}

Integrating with J2EE

These are now known as Flex Remote Procedure Call (RPC) services:

• HTTPService – Passes textual data over HTTP. This is often used to fetch RSS
feeds, read XML generated by a server, or simply pass text-based data from
server to client.

• WebService – Allows a Flex application to invoke server-side methods using
SOAP web services and handle the results of web service calls. These web
services may reside on the server that has served the RIA or may call third-party
web services through a proxy on the Flex server.

• RemoteObject – Allows a Flex application to directly invoke methods on Java
classes residing on the application server that has served the RIA. Data transfer is
in a binary format called Action Message Format (AMF) over HTTP or HTTPS,
with the Flex server translating Java and ActionScript objects as they pass over
the wire.

Note: In MTS, only HttpService and WebService are being used.
The Service Locator is a repository of all services that the RIA requires in which all
services are centralized using service tags.

Furthermore Service Locator abstracts developers from whether a service is a Java object,
a web service, or an HTTP service, and allows them to "treat them all the same." In
essence, the Service Locator encapsulates the implementation details of services, so
developers can simply request a service from the Service Locator, invoke methods on the
service, and handle the results however they might be shipped over the wire.

Cairngorm provides a base-class, ServiceLocator, which is a singleton for service
access. In a Cairngorm application, this base-class is extended through MXML, with the

Detailed System Design

Version 1.12 06/13/2014 26

convention of always having a file called Services.mxml in the business/package of the
application.

Here is an example of Services.mxml for MTS application.
<?xml version="1.0" encoding="utf-8"?>

<cairngorm:ServiceLocator

 xmlns:mx="http://www.adobe.com/2006/mxml"

 xmlns:cairngorm="com.adobe.cairngorm.business.*">

 <mx:WebService id="menuManagerService"
wsdl="http://localhost:8080/MTCSE_J2EEApp/services/MenuManagerWebServic
e?wsdl" showBusyCursor="true">

 <mx:operation name="getMenus" resultFormat="e4x">

 </mx:operation>

 <mx:operation name="saveMenu" resultFormat="e4x">

 </mx:operation>

 <mx:operation name="createMenu" resultFormat="e4x">

 </mx:operation>

 </mx:WebService>

<mx:WebService id="authenticationService"
wsdl="http://localhost:8080/MTCSE_J2EEApp/services/AuthenticationSer
viceWebService?wsdl" showBusyCursor="true">

 <mx:operation name="authenticateUser" resultFormat="xml">

 </mx:operation>

 </mx:WebService>

<mx:WebService id="userAdministrationService"
wsdl="http://localhost:8080/MTCSE_J2EEApp/services/UserAdministratio
nWebService?wsdl" showBusyCursor="true">

<mx:operation name="getRoleByRoleID" resultFormat="e4x">
</mx:operation>

<mx:operation name="getUsersByFilter" resultFormat="e4x">
</mx:operation>

<mx:operation name="getUsers" resultFormat="e4x">
</mx:operation>

<mx:operation name="addUser" resultFormat="e4x">
</mx:operation>

<mx:operation name="saveRole" resultFormat="e4x">
</mx:operation>

 </mx:WebService>

</cairngorm:ServiceLocator>

Detailed System Design

Version 1.12 06/13/2014 27

The Services.xml file always specifies result and fault handlers. The result handler is the
method called when a service call returns some data. The fault handler is called when a
service call fails. Because the Service Locator anticipates that its services will be used
multiple times in a multitude of different ways, it makes no assumptions about how to
handle any results that are returned. Instead, the Service Locator assumes that the result
handler and the fault handler will belong to the class that called the service. It achieves
this by specifying event.call.resultHandler and event.call.faultHandler as the
handlers through a Flex object known as the pending call.

Invoking a Service on the Service Locator

The following method in the LoginCommand shows the service invocation:
public function execute(event : CairngormEvent) : void

{

 model.login.isPending = true;

 var delegate : LoginDelegate = new LoginDelegate(this);

 var loginEvent : LoginEvent = LoginEvent(event);

 delegate.login(loginEvent.userVO);

}

The Login Delegate sample
package org.dhhs.mtcse.ui.business

{

 import com.adobe.cairngorm.business.Responder;

 import com.adobe.cairngorm.business.ServiceLocator;

 import org.dhhs.mtcse.ui.vo.UserVO;

 import flash.utils.setTimeout;

 import mx.rpc.events.FaultEvent;

 import mx.rpc.events.ResultEvent;

 import mx.rpc.AsyncToken;

 import mx.rpc.soap.mxml.WebService;

 import mx.rpc.AbstractOperation;

 import mx.controls.Alert;

 import org.dhhs.mtcse.ui.factories.MTCSEFactory;

 import mx.messaging.messages.SOAPMessage;

 public class LoginDelegate

Detailed System Design

Version 1.12 06/13/2014 28

 {

 private var responder : Responder;

 private var service : WebService;

 public function LoginDelegate(responder : Responder)

 {

this.service = ServiceLocator.getInstance().getService(
"authenticationService") as WebService;

 this.responder = responder;

 }

 public function login(userVO : UserVO): void

 {

service.addEventListener(ResultEvent.RESULT,
login_onResult,false,0.0,false);

service.addEventListener(FaultEvent.FAULT,
login_onFault,false,0.0,false);

service.authenticateUser(userVO.userID,
userVO.password);

 }

 protected function login_onResult(event:ResultEvent):void

 {

 var xmlDoc:XML = new XML(event.result);

var userVO:UserVO =
MTCSEFactory.getInstance().buildUserVOFromXML(xmlDoc);

 responder.onResult(userVO);

 }

 protected function login_onFault(event:FaultEvent):void

 {

 Alert.show(event.fault.toString());

responder.onFault(new FaultEvent(FaultEvent.FAULT,
false, true, event.fault));

 }

 }

}

Detailed System Design

Version 1.12 06/13/2014 29

4.4 J2EE Application Tier

The MTS will use a J2EE application development environment for the application tier.
The Java Enterprise services will support the scalability requirements defined for the
model system and allow Java programmers the flexibility to create programs based on
existing design patterns and current frameworks.

4.5 J2EE Design and Development
Standardization of the J2EE environment can be established in many ways. MTS will
utilize coding standards and toolsets to provide a scalable, well designed, structured
environment. Java persistence will be maintained using Hibernate to generate a standard
entity model. Java package structures will conform to defined naming structures and will
contain related classes. All web services will be generated within the Eclipse Integrated
Development Environment (IDE) for the associated application server.

J2EE standards will be founded on the use of standard design patterns using approaches
that both simplify and standardize application building. The overall goal of pattern usage
is to standardize the application's architectural layer and simplify the complexities of the
underlying independent business processes. Standardization of the programming within
these Java programs will further enhance system standardization and simplify
modification/maintenance.

4.5.1 Relational Persistence

Java persistence is maintained through the Hibernate object/relational query service.
Hibernate creates Java persistence classes that conform to object-oriented association,
inheritance, composition and collections. The MTS uses Hibernate tools to reverse
engineer data model structures to create domain model classes, Hibernate mapping files,
and entity beans. Using the Hibernate console configuration, an entity model can be
created from a corresponding data model. Once created, Hibernate code can be generated
from the entity model.

To generate Hibernate code:

Select Domain code and the hibernate.xml.cfg options in the code generation panel.

• Under the package explorer view under web content open the
hibernate.reveng.xml file to display the Hibernate mappings.

• Select the tables that you would like to create Java entities.

• All generated classes must belong to the org.dhhs.mtcse.entity package.

• Name the class names appropriately.

• Select the key column defined in the database. After completing all the tab
values, click on Hibernate Code Generation from the toolbar.

• Once complete click “Run” and generate the selected table. To view the object
relations select the entity model.

Detailed System Design

Version 1.12 06/13/2014 30

o For example: Enter org.dhhs.mtcse.entity.Role as the Class Name if the name
of the table is mtcse_role.

• To add Primary Key and the Generator for the Key Column, click “Add Primary
Key”.

o For example: Enter org.dhhs.mtcse.entity.Role as the Class Name if the name
of the table is mtcse_role.

4.5.2 Package Structure (Java Classes)

org.dhhs.mtcse.beans – This package contains Java Beans that represent Flex Value
Objects and used in Web Service Request/Response Data.

• To represent a User detail object, the Java Class will be named as UserVOType.
org.dhhs.mtcse.entity – This package contains the Hibernate reverse engineering classes
that represent entities

org.dhhs.mtcse.exception – This package contains the exception handling related classes

org.dhhs.mtcse.service – This package contains Java Classes that represent Web Services

To develop a UserAdministrationWebService, create a Plain Old Java Object (POJO) in
this package called UserAdministrationWebService.java

• Each class must have a handle to the Logger class as shown below.
private static Logger log =
LogService.getLogger(UserAdministrationWebService.class);

• The following lines define accessing the Business Service Interface.
/**

 * Get the service interface.

 *

 * @return IUserAdministrationService interface

 */

private IUserAdministrationService getUserAdministrationService() {

 try {

 return (IUserAdministrationService)
ServiceLocator.getService(ServiceLocator.USERADMINISTRATION_SERVICE)
;

} catch (Exception e) {

 return null;

 }

}

• All methods that are defined as operations must be defined public. If a specific
web service operation returns a collection, WS-I recommends using simple arrays
instead of complex Java Collections.

Detailed System Design

Version 1.12 06/13/2014 31

For example, to return list of all users, return a UserVOType array

public UserVOType[] getUsers() throws GenericBusinessException {

org.dhhs.mtcse.servicelocator – This package contains the framework necessary for
locating the service interface and returning it to the Web Servcice. For each new Service
and Interface added, update the ServiceLocator class contained in this package.

• The code above defines the User Administration Service Constant as defined in
the service.properties file.

/**

* The AuthenticationServiceService name.

*/

public static final String USERADMINISTRATION_SERVICE =
"USERADMINISTRATION_SERVICE";

• In addition, also add the following two definitions to the ServiceLocator class:
serviceInfoMap.put(USERADMINISTRATION_SERVICE,props.getProperty(USER
ADMINISTRATION_SERVICE));

serviceInterfaceMap.put(USERADMINISTRATION_SERVICE,"org.dhhs.mtcse.s
ession.IUserAdministrationService");

• Note: Also add an entry to the service.xml file as follows:
USERADMINISTRATION_SERVICE=org.dhhs.mtcse.session.UserAdministration
Service

org.dhhs.mtcse.session – This package contains all the interfaces and class
implementations for these interfaces or business services. Interface names start with
prefix “I”.

• The interface defines all methods that are to be implemented by the class:
public interface IUserAdministrationService {

 public User addUser(User user) throws GenericBusinessException;

 public void deleteUser(String user) throws
GenericBusinessException;

 public User getUserById(String userID) throws
GenericBusinessException;

 public java.util.Collection<User> getUserList() throws
GenericBusinessException;

 public java.util.Collection<User> getUserList(int startIndex, int
endIndex) throws GenericBusinessException;

 public int getUsersSize() throws GenericBusinessException;

 public void saveUser(User user) throws GenericBusinessException;

}

Detailed System Design

Version 1.12 06/13/2014 32

• Now the class that implements the interface will be defined as follows:
public class UserAdministrationService implements
IUserAdministrationService, LocatableService {

…

…

…

…

…

…

/* (non-Javadoc)

 * @see
org.dhhs.mtcse.session.IUserAdministrationService#addUser(org.dhhs.m
tcse.entity.User)

 */

public User addUser(User user) throws GenericBusinessException {

 org.dhhs.mtcse.util.HibernateQueryHelper hibernateTemplate = new
org.dhhs.mtcse.util.HibernateQueryHelper();

 log.debug("Adding a New User");

 try {

 hibernateTemplate.save(user);

 } finally {

 log.debug("finished addUser(User user)");

 }

 return null;

}

}

org.dhhs.mtcse.util – This package contains any utility classes including the Hibernate
supporting utilities.

org.dhhs.mtcse.util.log – This package contains the logging classes for Log4J

4.5.3 Web Service Generation

Although the web services have been defined as POJOs the actual web service can be
generated from within the Eclipse IDE. The web services are Java classes located in the
package org.dhhs.mtcse.service. The web service uses Apache Access as the web service
runtime and will default to this value during the generation of the web services.

These POJOs can be transformed into web services by the following process:

• Select the Java program and right click for the context menu.

• Select Web Services->Create Web Service.

Detailed System Design

Version 1.12 06/13/2014 33

• Validate the server and project information and generate the web service for the
target server. The process will include the generation of the WSDL file once the
file is generated.

Detailed System Design

Version 1.12 06/13/2014 34

4.6 Java Conventions and Standards

The MTS J2EE Java standards given below are primarily based on standards defined in “Java Programmer Style Guidelines”
published by Geotechnical Software Services available at http://geosoft.no/development/javastyle.html . These guidelines
have been modified based on specific needs of the MTS project. All Java source should adhere to the prescribed standards.
Programming standards and code reviews will be based on the following recommendations and requirements.

4.6.1 Naming Conventions

4.6.1.1.1 General Naming Conventions

Names representing packages should be in all lower case.

Example: mypackage, com.company.application.ui

Package naming convention used by Sun for the Java core packages. The initial package name representing the domain name must be
in lower case.

Names representing types must be nouns and written in mixed case starting with upper case.

Example: Line, AudioSystem

Common practice in the Java development community and also the type naming convention used by Sun for the Java core packages.

http://geosoft.no/development/javastyle.html

Detailed System Design

Version 1.12 06/13/2014 35

Variable names must be in mixed case starting with lower case.

Example: line, audioSystem

Common practice in the Java development community and also the naming convention for variables used by Sun for the Java core
packages. Makes variables easy to distinguish from types, and effectively resolves potential naming collision as in the declaration Line
line;

Names representing constants (final variables) must be all uppercase using underscore to separate words.

Example: MAX_ITERATIONS, COLOR_RED

Common practice in the Java development community and also the naming convention used by Sun for the Java core packages.

In general, the use of such constants should be minimized. In many cases implementing the value as a method is a better choice:

 int getMaxIterations() // NOT: MAX_ITERATIONS = 25

 {

 return 25;

 }

This form is both easier to read, and it ensures a uniform interface towards class values.

Detailed System Design

Version 1.12 06/13/2014 36

Names representing methods must be verbs and written in mixed case starting with lower case.

Example: getName(), computeTotalWidth()

Common practice in the Java development community and also the naming convention used by Sun for the Java core packages. This is
identical to variable names, but methods in Java are already distinguishable from variables by their specific form.

Abbreviations and acronyms should not be uppercase when used as name.

Example:

exportHtmlSource(); // NOT: exportHTMLSource();

openDvdPlayer(); // NOT: openDVDPlayer();

Using all uppercase for the base name will give conflicts with the naming conventions given above. A variable of this type would have to
be named dVD, hTML etc. which obviously is not very readable. Another problem is illustrated in the examples above; When the name is
connected to another, the readability is seriously reduced; The word following the acronym does not stand out as it should.

Private class variables should have underscore suffix.

Example: class Person { private String name_; ... }

Apart from its name and its type, the scope of a variable is its most important feature. Indicating class scope by using underscore makes it
easy to distinguish class variables from local scratch variables. This is important because class variables are considered to have higher

Detailed System Design

Version 1.12 06/13/2014 37

Private class variables should have underscore suffix.

significance than method variables, and should be treated with special care by the programmer.

A side effect of the underscore naming convention is that it nicely resolves the problem of finding reasonable variable names for setter
methods:

 void setName(String name)

 {

 name_ = name;

 }

An issue is whether the underscore should be added as a prefix or as a suffix. Both practices are commonly used, but the latter is
recommended because it seems to best preserve the readability of the name.

It should be noted that scope identification in variables have been a controversial issue for quite some time. It seems, though, that this
practice now is gaining acceptance and that it is becoming more and more common as a convention in the professional development
community.

Generic variables should have the same name as their type.

Example:

void setTopic(Topic topic)

// NOT: void setTopic(Topic value)

// NOT: void setTopic(Topic aTopic)

// NOT: void setTopic(Topic t)

void connect(Database database)

 // NOT: void connect(Database db)

// NOT: void connect(Database oracleDB)

Detailed System Design

Version 1.12 06/13/2014 38

Reduce complexity by reducing the number of terms and names used. Also makes it easy to deduce the type given a variable name only.

If for some reason this convention doesn't seem to fit it is a strong indication that the type name is badly chosen. Non-generic variables
have a role. These variables can often be named by combining role and type:

 Point startingPoint, centerPoint;

 Name loginName;

All names should be written in English.

Example:

English is the preferred language for international development.

Variables with a large scope should have long names, variables with a small scope can have short names.

Example:

Scratch variables used for temporary storage or indices are best kept short. A programmer reading such variables should be able to
assume that its value is not used outside a few lines of code. Common scratch variables for integers are i, j, k, m, n and for characters c
and d.

Detailed System Design

Version 1.12 06/13/2014 39

The name of the object is implicit, and should be avoided in a method name.

Example:

Line.getLength(); // NOT: line.getLineLength();

The latter might seem natural in the class declaration, but proves superfluous in use, as shown in the example.

4.6.1.2 Specific Naming Conventions

The terms get/set must be used where an attribute is accessed directly.

Example:

employee.getName();

employee.setName(name);

matrix.getElement(2, 4);

matrix.setElement(2, 4, value);

Common practice in the Java community and the convention used by Sun for the Java core packages.

Detailed System Design

Version 1.12 06/13/2014 40

is prefix should be used for boolean variables and methods.

Example:

isSet, isVisible, isFinished, isFound, isOpen

This is the naming convention for boolean methods and variables used by Sun for the Java core packages.

Using the is prefix solves a common problem of choosing bad boolean names like status or flag isStatus or isFlag simply doesn't fit, and
the programmer is forced to choose more meaningful names.

Setter methods for boolean variables must have set prefix as in:

 void setFound(boolean isFound);

There are a few alternatives to the is prefix that fits better in some situations. These are has, can and should prefixes:

 boolean hasLicense();

 boolean canEvaluate();

 boolean shouldAbort = false;

The term compute can be used in methods where something is computed.

Example:

valueSet.computeAverage(); matrix.computeInverse()

Give the reader the immediate clue that this is a potential time consuming operation, and if used repeatedly, he might consider caching
the result. Consistent use of the term enhances readability.

Detailed System Design

Version 1.12 06/13/2014 41

The term find can be used in methods where something is looked up.

Example:

vertex.findNearestVertex();

matrix.findSmallestElement();

node.findShortestPath(Node destinationNode);

Give the reader the immediate clue that this is a simple look up method with a minimum of computations involved. Consistent use of the
term enhances readability.

The term initialize can be used where an object or a concept is established.

Example:

printer.initializeFontSet();

The American initialize should be preferred over the English initialise. The abbreviation init must be avoided.

JFC (Java Swing) variables should be suffixed by the element type.

Example:

widthScale, nameTextField, leftScrollbar, mainPanel, fileToggle, minLabel, printerDialog

Detailed System Design

Version 1.12 06/13/2014 42

Enhances readability since the name gives the user an immediate clue of the type of the variable and thereby the available resources of
the object.

Plural form should be used on names representing a collection of objects.

Example:

Collection<Point> points; int[] values;

Enhances readability since the name gives the user an immediate clue of the type of the variable and the operations that can be
performed on its elements.

n prefix should be used for variables representing a number of objects.

Example:

nPoints, nLines

The notation is taken from mathematics where it is an established convention for indicating a number of objects.

Note that Sun use num prefix in the core Java packages for such variables. This is probably meant as an abbreviation of number of, but
as it looks more like number it makes the variable name strange and misleading. If "number of" is the preferred phrase, numberOf prefix
can be used instead of just n. num prefix must not be used.

Detailed System Design

Version 1.12 06/13/2014 43

No suffix should be used for variables representing an entity number.

Example:

tableNo, employeeNo

The notation is taken from mathematics where it is an established convention for indicating an entity number.

An elegant alternative is to prefix such variables with an i: iTable, iEmployee. This effectively makes them named iterators.

Iterator variables should be called i, j, k etc.

Example:

For (Iterator i = points.iterator(); i.hasNext();) {

 :

}

 for (int i = 0; i < nTables; i++) {

 :

}

The notation is taken from mathematics where it is an established convention for indicating iterators.

Variables named j, k etc. should be used for nested loops only.

Detailed System Design

Version 1.12 06/13/2014 44

Complement names must be used for complement entities [1].

Example:

get/set, add/remove, create/destroy, start/stop, insert/delete, increment/decrement, old/new, begin/end, first/last, up/down, min/max,
next/previous, old/new, open/close, show/hide, suspend/resume, etc.

Reduce complexity by symmetry.

Detailed System Design

Version 1.12 06/13/2014 45

Abbreviations in names should be avoided.

Example:

computeAverage(); // NOT: compAvg();

ActionEvent event; // NOT: ActionEvent e;

catch (Exception exception) { // NOT: catch (Exception e) {

There are two types of words to consider. Common words listed in a language dictionary must never be abbreviated. Never write:

cmd instead of command
comp instead of compute
cp instead of copy
e instead of exception
init instead of initialize
pt instead of point
etc.

Then there are domain specific phrases that are more naturally known through their acronym or abbreviations. These phrases should be
kept abbreviated. Never write:

HypertextMarkupLanguage instead of html
CentralProcessingUnit instead of cpu
PriceEarningRatio instead of pe
etc.

Detailed System Design

Version 1.12 06/13/2014 46

Negated boolean variable names must be avoided.

Example:

bool isError; // NOT: isNoError

bool isFound; // NOT: isNotFound

The problem arise when the logical not operator is used and double negative arises. It is not immediately apparent what !isNotError
means.

Associated constants (final variables) should be prefixed by a common type name.

Example:

final int COLOR_RED = 1;

final int COLOR_GREEN = 2;

final int COLOR_BLUE = 3;

Detailed System Design

Version 1.12 06/13/2014 47

This indicates that the constants belong together, and what concept the constants represent.

An alternative to this approach is to put the constants inside an interface effectively prefixing their names with the name of the interface:

 interface Color

 {

 final int RED = 1;

 final int GREEN = 2;

 final int BLUE = 3;

 }

Exception classes should be suffixed with Exception.

Example:

Class AccessException extends Exception { : }

Exception classes are really not part of the main design of the program, and naming them like this makes them stand out relative to the
other classes. This standard is followed by Sun in the basic Java library.

Default interface implementations can be prefixed by Default.

Example:

Class DefaultTableCellRenderer implements TableCellRenderer { : }

Detailed System Design

Version 1.12 06/13/2014 48

It is not uncommon to create a simplistic class implementation of an interface providing default behavior to the interface methods. The
convention of prefixing these classes by default has been adopted by Sun for the Java library.

Singleton classes should return their sole instance through method getInstance.

Example:

Class UnitManager

 {

private final static UnitManager instance_ = new UnitManager();

private UnitManager()

 {

...

}

public static UnitManager getInstance() // NOT: get() or instance() or unitManager() etc.

 { return instance_;

}

}

Common practice in the Java community though not consistently followed by Sun in the JDK. The above layout is the preferred pattern.

Detailed System Design

Version 1.12 06/13/2014 49

Classes that creates instances on behalf of others (factories) can do so through method new[ClassName].

Example:

Class PointFactory

 { public Point newPoint(...)

{

...

}

 }

Indicates that the instance is created by new inside the factory method and that the construct is a controlled replacement of new Point().

Functions (methods returning an object) should be named after what they return and procedures (void methods) after what they
do.

Increases readability. Makes it clear what the unit should do and especially all the things it is not supposed to do. This again makes it
easier to keep the code clean of side effects.

Detailed System Design

Version 1.12 06/13/2014 50

4.6.2 Java Source Files

Java source files should have the extension .java.

Example:

Point.java

Enforced by the Java tools.

Classes should be declared in individual files with the file name matching the class name. Secondary private classes can be
declared as inner classes and reside in the file of the class they belong to.

Example:

Enforced by the Java tools.

Detailed System Design

Version 1.12 06/13/2014 51

File content must be kept within 80 columns.

Example:

80 columns is the common dimension for editors, terminal emulators, printers and debuggers, and files that are shared between several
developers should keep within these constraints. It improves readability when unintentional line breaks are avoided when passing a file
between programmers.

Special characters like TAB and page break must be avoided.

Example:

These characters are bound to cause problem for editors, printers, terminal emulators or debuggers when used in a multi-programmer,
multi-platform environment.

Detailed System Design

Version 1.12 06/13/2014 52

The incompleteness of split lines must be made obvious.

Example:

totalSum = a + b + c + d + e;

method(param1, param2, param3);

 setText ("Long line split" + "into two parts.");

for (int tableNo = 0; tableNo < nTables; tableNo += tableStep) {

 ...

 }

Split lines occurs when a statement exceed the 80 column limit given above. It is difficult to give rigid rules for how lines should be split,
but the examples above should give a general hint.

In general:

• Break after a comma.

• Break after an operator.

• Align the new line with the beginning of the expression on the previous line.

Detailed System Design

Version 1.12 06/13/2014 53

4.6.3 Program Statements

4.6.3.1 Package and Import Statements

The package statement must be the first statement of the file. All files should belong to a specific package.

Example:

The package statement location is enforced by the Java language. Letting all files belong to an actual (rather than the Java default)
package enforces Java language object oriented programming techniques.

The import statements must follow the package statement. import statements should be sorted with the most fundamental
packages first, and grouped with associated packages together and one blank line between groups.

Example:

import java.io.IOException;

import java.net.URL;

import java.rmi.RmiServer;

import java.rmi.server.Server;

import javax.swing.JPanel;

import javax.swing.event.ActionEvent;

import org.linux.apache.server.SoapServer;

Detailed System Design

Version 1.12 06/13/2014 54

The import statement location is enforced by the Java language. The sorting makes it simple to browse the list when there are many
imports, and it makes it easy to determine the dependencies of the present package. The grouping reduces complexity by collapsing
related information into a common unit.

Imported classes should always be listed explicitly.

Example:

import java.util.List; // NOT: import java.util.*;

import java.util.ArrayList;

import java.util.HashSet;

Importing classes explicitly gives an excellent documentation value for the class at hand and makes the class easier to comprehend and
maintain.

Appropriate tools should be used in order to always keep the import list minimal and up to date.

Detailed System Design

Version 1.12 06/13/2014 55

4.6.3.2 Classes and Interfaces

Class and Interface declarations should be organized in the following manner:

1. Class/Interface documentation.

2. Class or interface statement.

3. Class (static) variables in the order public, protected, package (no access modifier), private.

4. Instance variables in the order public, protected, package (no access modifier), private.

5. Constructors.

Methods (no specific order).

Example:

Reduce complexity by making the location of each class element predictable.

4.6.3.3 Methods

Method modifiers should be given in the following order:
<access> static abstract synchronized <unusual> final native
The <access> modifier (if present) must be the first modifier.

Example:

public static double square(double a); // NOT: static public double square(double a);

Detailed System Design

Version 1.12 06/13/2014 56

<access> is public, protected or private while <unusual> includes volatile and transient. The most important lesson here is to keep the
access modifier as the first modifier. Of the possible modifiers, this is by far the most important, and it must stand out in the method
declaration. For the other modifiers, the order is less important, but it makes sense to have a fixed convention.

4.6.3.4 Types

 Type conversions must always be done explicitly. Never rely on implicit type conversion.

Example:

floatValue = (int) intValue; // NOT: floatValue = intValue;

By this, the programmer indicates that he is aware of the different types involved and that the mix is intentional.

Array specifiers must be attached to the type not the variable.

Example:

int[] a = new int[20]; // NOT: int a[] = new int[20]

The array-ness is a feature of the base type, not the variable. It is not known why Sun allows both forms.

Detailed System Design

Version 1.12 06/13/2014 57

4.6.3.5 Variables

Variables should be initialized where they are declared and they should be declared in the smallest scope possible.

Example:

This ensures that variables are valid at any time. Sometimes it is impossible to initialize a variable to a valid value where it is declared. In
these cases it should be left uninitialized rather than initialized to some phony value.

Variables must never have dual meaning.

Example:

Enhances readability by ensuring all concepts are represented uniquely. Reduce chance of error by side effects.

Class variables should never be declared public.

Example:

The concept of Java information hiding and encapsulation is violated by public variables. Use private variables and access functions
instead. One exception to this rule is when the class is essentially a data structure, with no behavior (equivalent to a C++ struct). In this
case it is appropriate to make the class' instance variables public [2].

Detailed System Design

Version 1.12 06/13/2014 58

Arrays should be declared with their brackets next to the type.

Example:

double[] vertex; // NOT: double vertex[];

int[] count; // NOT: int count[];

public static void main(String[] arguments)

public double[] computeVertex()

The reason for is twofold. First, the array-ness is a feature of the class, not the variable. Second, when returning an array from a method,
it is not possible to have the brackets with other than the type (as shown in the last example).

Variables should be kept alive for as short a time as possible.

Example:

Keeping the operations on a variable within a small scope, it is easier to control the effects and side effects of the variable.

Detailed System Design

Version 1.12 06/13/2014 59

4.6.3.6 Loops

Only loop control statements must be included in the for() construction.

Example:

sum = 0; // NOT: for (i = 0, sum = 0; i < 100; i++)

for (i = 0; i < 100; i++) sum += value[i];

sum += value[i];

Increase maintainability and readability. Make a clear distinction of what controls and what is contained in the loop.

Loop variables should be initialized immediately before the loop.

Example:

isDone = false; // NOT: bool isDone = false;

while (!isDone) { // :

: // while (!isDone) {

 } // :

 // }

Detailed System Design

Version 1.12 06/13/2014 60

The use of do-while loops can be avoided.

Example:

Do-while loops are less readable than ordinary while loops and for loops since the conditional is at the bottom of the loop. The reader
must scan the entire loop in order to understand the scope of the loop.

In addition, do-while loops are not needed. Any do-while loop can easily be rewritten into a while loop or a for loop. Reducing the number
of constructs used enhances readability.

 The use of break and continue in loops should be avoided.

Example:

These statements should only be used if they prove to give higher readability than their structured counterparts.

Detailed System Design

Version 1.12 06/13/2014 61

4.6.3.7 Conditionals

Complex conditional expressions must be avoided. Introduce temporary boolean variables instead [1].

Example:

bool isFinished = (elementNo < 0) || (elementNo > maxElement);

bool isRepeatedEntry = elementNo == lastElement;

 if (isFinished || isRepeatedEntry) { : }

// NOT: if ((elementNo < 0) || (elementNo > maxElement)|| elementNo == lastElement) {

:

}

By assigning Boolean variables to expressions, the program gets automatic documentation. The construction will be easier to read,
debug and maintain.

Detailed System Design

Version 1.12 06/13/2014 62

The nominal case should be put in the if-part and the exception in the else-part of an if statement [1].

Example:

boolean isOk = readFile(fileName); if (isOk) {

 :

}

else {

 :

}

Makes sure that the exceptions do not obscure the normal path of execution. This is important for both the readability and performance.

The conditional should be put on a separate line.

Example:

if (isDone) // NOT: if (isDone) doCleanup();

doCleanup();

This is for debugging purposes. When writing on a single line, it is not apparent whether the test is really true or not.

Detailed System Design

Version 1.12 06/13/2014 63

Executable statements in conditionals must be avoided.

Example:

InputStream stream = File.open(fileName, "w");

if (stream != null) {

 :

 }

 // NOT: if (File.open(fileName, "w") != null)) {

:

}

Conditionals with executable statements are simply very difficult to read. This is especially true for programmers new to Java.

Detailed System Design

Version 1.12 06/13/2014 64

4.6.3.8 Miscellaneous

The use of magic numbers in the code should be avoided. Numbers other than 0 and 1 can be considered declared as named
constants instead.

Example:

private static final int TEAM_SIZE = 11;

:

Player[] players = new Player[TEAM_SIZE]; // NOT: Player[] players = new Player[11];

If the number does not have an obvious meaning by itself, the readability is enhanced by introducing a named constant instead.

Floating point constants should always be written with decimal point and at least one decimal.

Example:

double total = 0.0; // NOT: double total = 0;

double speed = 3.0e8; // NOT: double speed = 3e8;

double sum;

 :

sum = (a + b) * 10.0;

Detailed System Design

Version 1.12 06/13/2014 65

This emphasizes the different nature of integer and floating point numbers. Mathematically the two model completely different and non-
compatible concepts.

Also, as in the last example above, it emphasizes the type of the assigned variable (sum) at a point in the code where this might not be
evident.

Floating point constants should always be written with a digit before the decimal point.

Example:

double total = 0.5; // NOT: double total = .5;

The number and expression system in Java is borrowed from mathematics and one should adhere to mathematical conventions for syntax
wherever possible. Also, 0.5 is a lot more readable than .5; There is no way it can be mixed with the integer 5.

Static variables or methods must always be referred to through the class name and never through an instance variable.

Example:

Thread.sleep(1000); // NOT: thread.sleep(1000);

This emphasize that the element references is static and independent of any particular instance. For the same reason the class name
should also be included when a variable or method is accessed from within the same class.

Detailed System Design

Version 1.12 06/13/2014 66

4.6.4 Layout and Comments

4.6.4.1 Layout

Basic indentation should be 2.

Example:

for (i = 0; i < nElements; i++)

a[i] = 0;

Indentation is used to emphasize the logical structure of the code. Indentation of 1 is too small to achieve this. Indentation larger than 4
makes deeply nested code difficult to read and increase the chance that the lines must be split. Choosing between indentation of 2, 3 and
4; 2 and 4 are the more common, and 2 chosen to reduce the chance of splitting code lines. Note that the Sun recommendation on this
point is 4.

Detailed System Design

Version 1.12 06/13/2014 67

Block layout should be as illustrated in example 1 below (recommended) or example 2, and must not be as shown in example 3.
Class, Interface and method blocks should use the block layout of example 2.

Example 1:

while (!done)

 {

doSomething();

done = moreToDo();

}

Example 2:

while (!done)

{

doSomething();

done = moreToDo();

}

Example 3:

while (!done) {

doSomething();

done = moreToDo();

 }

Example 3 introduces an extra indentation level which doesn't emphasize the logical structure of the code as clearly as example 1 and 2.

Detailed System Design

Version 1.12 06/13/2014 68

The class and interface declarations should have the following form:

Example:

class Rectangle extends Shape

implements Cloneable, Serializable {

...

 }

This follows from the general block rule above. Note that it is common in the Java developer community to have the opening bracket at the
end of the line of the class keyword. This is not recommended.

Method definitions should have the following form:

Example:

public void someMethod() throws SomeException {

 ...

 }

See comment on class statements above.

Detailed System Design

Version 1.12 06/13/2014 69

The if-else class of statements should have the following form:

Example:

if (condition){

statements;

 }

if (condition){

statements;

}

 else {

statements;

}

if (condition) {

 statements;

}

else if (condition) {

 statements;

}

else {

statements;

}

Detailed System Design

Version 1.12 06/13/2014 70

The if-else class of statements should have the following form:

This follows partly from the general block rule above. However, it might be discussed if an else clause should be on the same line as the
closing bracket of the previous if or else clause:

 if (condition) {

 statements;

 } else {

 statements;

 }

This is equivalent to the Sun recommendation. The chosen approach is considered better in the way that each part of the if-else
statement is written on separate lines of the file. This should make it easier to manipulate the statement, for instance when moving else
clauses around.

The for statement should have the following form:

Example:

for (initialization; condition; update) {

statements;

 }

This follows from the general block rule above.

Detailed System Design

Version 1.12 06/13/2014 71

An empty for statement should have the following form:

Example:

for (initialization; condition; update)

 ;

This emphasize the fact that the for statement is empty and it makes it obvious for the reader that this is intentional.

The while statement should have the following form:

Example:

while (condition) {

statements;

}

This follows from the general block rule above.

The do-while statement should have the following form:

Example:

do {

statements;

 } while (condition);

This follows from the general block rule above.

Detailed System Design

Version 1.12 06/13/2014 72

The switch statement should have the following form:

Example:

switch (condition) {

case ABC :

statements; // Fallthrough

case DEF :

statements;

 break;

case XYZ :

statements;

break;

 default :

statements;

break; }

This differs slightly from the Sun recommendation both in indentation and spacing. In particular, each case keyword is indented relative to
the switch statement as a whole. This makes the entire switch statement stand out. Note also the extra space before the : character. The
explicit Fallthrough comment should be included whenever there is a case statement without a break statement. Leaving the break out is
a common error, and it must be made clear that it is intentional when it is not there.

Detailed System Design

Version 1.12 06/13/2014 73

A try-catch statement should have the following form:

Example:

try {

statements;

 }

catch (Exception exception) {

statements; } try { statements;

 }

catch (Exception exception) {

statements;

}

 finally {

statements;

 }

This follows partly from the general block rule above. This form differs from the Sun recommendation in the same way as the if-else
statement described above.

Detailed System Design

Version 1.12 06/13/2014 74

Single statement if-else, for or while statements can be written without brackets.

Example:

if (condition)

statement;

while (condition)

statement;

or (initialization; condition; update)

statement;

It is a common recommendation (Sun Java recommendation included) that brackets should always be used in all these cases. However,
brackets are in general a language construct that groups several statements. Brackets are per definition superfluous on a single
statement. A common argument against this syntax is that the code will break if an additional statement is added without also adding the
brackets. In general however, code should never be written to accommodate for changes that might arise.

Detailed System Design

Version 1.12 06/13/2014 75

4.6.4.1.1 White Space

- Operators should be surrounded by a space character.
- Java reserved words should be followed by a white space.
- Commas should be followed by a white space.
- Colons should be surrounded by white space.
- Semicolons in for statements should be followed by a space character.

Example:

a = (b + c) * d; // NOT: a=(b+c)*d

while (true) { // NOT: while(true){

...

doSomething(a, b, c, d); // NOT: doSomething(a,b,c,d);

case 100 : // NOT: case 100:

 for (i = 0; i < 10; i++) { // NOT: for(i=0;i<10;i++){

...

Makes the individual components of the statements stand out and enhances readability. It is difficult to give a complete list of the
suggested use of whitespace in Java code. The examples above however should give a general idea of the intentions.

Method names can be followed by a white space when it is followed by another name.

Example:

doSomething (currentFile);

Detailed System Design

Version 1.12 06/13/2014 76

Method names can be followed by a white space when it is followed by another name.

Makes the individual names stand out. Enhances readability. When no name follows, the space can be omitted (doSomething()) since
there is no doubt about the name in this case.

An alternative to this approach is to require a space after the opening parenthesis. Those that adhere to this standard usually also leave a
space before the closing parentheses: doSomething(currentFile);. This do make the individual names stand out as is the intention, but
the space before the closing parenthesis is rather artificial, and without this space the statement looks rather asymmetrical (doSomething(
currentFile);).

Logical units within a block should be separated by one blank line.

Example:

// Create a new identity matrix

Matrix4x4 matrix = new Matrix4x4();

 // Precompute angles for efficiency

double cosAngle = Math.cos(angle);

double sinAngle = Math.sin(angle);

// Specify matrix as a rotation transformation

matrix.setElement(1, 1, cosAngle);

matrix.setElement(1, 2, sinAngle);

matrix.setElement(2, 1, -sinAngle);

matrix.setElement(2, 2, cosAngle);

// Apply rotation

transformation.multiply(matrix);

Detailed System Design

Version 1.12 06/13/2014 77

Enhances readability by introducing white space between logical units. Each block is often introduced by a comment as indicated in the
example above.

Variables in declarations can be left aligned.

Example:

TextFile file;

int nPoints;

double x, y;

Enhances readability. The variables are easier to spot from the types by alignment.

Detailed System Design

Version 1.12 06/13/2014 78

Statements should be aligned wherever this enhances readability.

Example:

if (a == lowValue) compueSomething();

else if (a == mediumValue) computeSomethingElse();

else if (a == highValue) computeSomethingElseYet();

value = (potential * oilDensity) / constant1 +

(depth * waterDensity) / constant2 +

(zCoordinateValue * gasDensity) / constant3;

minPosition = computeDistance(min, x, y, z);

averagePosition = computeDistance(average, x, y, z);

switch (phase) {

case PHASE_OIL : text = "Oil"; break;

case PHASE_WATER : text = "Water"; break;

case PHASE_GAS : text = "Gas"; break;

}

There are a number of places in the code where white space can be included to enhance readability even if this violates common
guidelines. Many of these cases have to do with code alignment. General guidelines on code alignment are difficult to give, but the
examples above should give some general hints. In short, any construction that enhances readability should be allowed.

Detailed System Design

Version 1.12 06/13/2014 79

4.6.4.1.2 Comments

Tricky code should not be commented but rewritten.

Example:

In general, the use of comments should be minimized by making the code self-documenting by appropriate name choices and an explicit
logical structure.

All comments should be written in English.

Example:

In an international environment English is the preferred language.

Detailed System Design

Version 1.12 06/13/2014 80

Javadoc comments should have the following form:

Example:

/**

 * Return lateral location of the specified position.

 * If the position is unset, NaN is returned.

 *

 * @param x X coordinate of position.

 * @param y Y coordinate of position.

 * @param zone Zone of position.

 * @return Lateral location.

 * @throws IllegalArgumentException If zone is <= 0.

 */

public double computeLocation(double x, double y, int zone)

 throws IllegalArgumentException {

 ...

}

Detailed System Design

Version 1.12 06/13/2014 81

Javadoc comments should have the following form:

A readable form is important because this type of documentation is typically read more often inside the code than it is as processed text.

Note in particular:

• The opening /** on a separate line

• Subsequent * is aligned with the first one

• Space after each *

• Empty line between description and parameter section

• Alignment of parameter descriptions

• Punctuation behind each parameter description

• No blank line between the documentation block and the method/class

Javadoc of class members can be specified on a single line as follows:

 /** Number of connections to this database */

 private int nConnections_;

Detailed System Design

Version 1.12 06/13/2014 82

There should be a space after the comment identifier.

Example:

// This is a comment NOT: //This is a comment

/**

* This is a javadoc

 * comment */

NOT: /**

*This is a javadoc

*comment

 */

Improves readability by making the text stand out.

Use // for all non-JavaDoc comments, including multi-line comments.

Example:

// Comment spanning

 // more than one line.

Since multilevel Java commenting is not supported, using // comments ensure that it is always possible to comment out entire sections of
a file using /* */ for debugging purposes etc.

Detailed System Design

Version 1.12 06/13/2014 83

Comments should be indented relative to their position in the code [1].

Example:

while (true) {

// Do something

something();

}

// NOT: while (true) {

// Do something

 something();

}

This is to avoid that the comments break the logical structure of the program.

The declaration of anonymous collection variables should be followed by a comment stating the common type of the elements
of the collection.

Example:

private Vector points_; // of Point

private Set shapes_; // of Shape

Detailed System Design

Version 1.12 06/13/2014 84

The declaration of anonymous collection variables should be followed by a comment stating the common type of the elements
of the collection.

Without the extra comment it can be hard to figure out what the collection consist of, and thereby how to treat the elements of the
collection. In methods taking collection variables as input, the common type of the elements should be given in the associated JavaDoc
comment.

Whenever possible one should of course qualify the collection with the type to make the comment superfluous:

 private Vector<Point> points_;

 private Set<Shape> shapes_;

All public classes and public and protected functions within public classes should be documented using the Java
documentation (javadoc) conventions.

Example:

This makes it easy to keep up-to-date online code documentation.

MTS Detailed System Design

Version 1.12 06/13/2014 85

4.7 Exception Handling
The exception handling framework for the MTS accommodate for error handling and modes of
detection, isolation, and messaging that may occur during the operation of the application.
Conditions which cause an exception during a UI session will produce application information,
warnings, and errors messages to the user. On-line, background and scheduled architectures will
be capable of handling failures and warnings and will allow for the requisite error messaging,
logging, reporting, and administrator notification as dictated by the particular error handling
process. The Exception Handling & Logging framework will be based on Java Exception
Hierarchy and Logging, which is based on the Log4J Logging API.

System errors, program errors, navigation errors, and logging errors will be tracked and recorded
by the application for system maintenance. Error processing will be evaluated differently based
on the type of error and on the audience associated with the area in which the error occurs.

The Exception Processing Framework Use Case document details the functionality and
components for exception handling within the MTS.

4.7.1 Error Messages

Error messages are either user-based or environment-based. The user error message will provide
sufficient information to identify and correct the underlying problem. The environment error
will need to provide detailed information on the corrective action required and possibly the
current status of the application.

Error messages produced by the application will be designed to be tailored for specific usages
within the application. The following cites the specific properties the message categories use
within the MTS application:

Enterprise Messages

error. – Error messages used throughout the application.

warning. – Warning message used throughout the application.

message. – Messages used throughout the application.

Flex Specific Messages

flex.error. – Flex Error messages used throughout the online application.

flex.warning. – Flex Warning message used throughout the online application.

flex.message. – Flex Message used throughout the online application.

flex.panel.error. – Error messages used throughout the panel of the online application.

flex.panel.warning. – Warning messages used throughout the panel of the online application.

flex.panel.message. – Message used throughout the panel of the online application.

flex.container.panel.error. – Error messages used within a container and inside a panel in the
online application.

flex.container.panel.warning. – Warning messages used within a container and inside a panel in
the online application.

Detailed System Design

Version 1.12 06/13/2014 86

flex.container.panel.message. – Messages used within a container and inside a panel in the online
application.

4.7.2 Exception Handling & Logging Standards

Exceptions

• Generally use the predefined exceptions types. Define new exception types only for
programmatic scenarios. Introduce a new exception class to enable a programmer to take
a different action in code based on the exception class.

• Do not derive user-defined exceptions from the Exception base class. Derive custom
exceptions from the ApplicationException class.

• Include a localized description string in every exception. When a user message is
displayed, it is derived from the description string of the exception that was thrown,
rather than from the exception class.

• Use grammatically correct error messages, including ending punctuation. Each sentence
in a description string of an exception should end in a period.

• Provide Exception properties for programmatic access. Include extra information in an
exception (in addition to the description string) only when there is a programmatic
scenario where the additional information is useful.

• When designing exception processing design patterns for the application, they should be
grouped together rather than simply having them all extend Exception .

Logging

• Obtain a handle to the logging framework and simply call the log method providing the
severity level for this message like “Debug”, “Info”, “Warning”, “Error”, “Fatal”.

• Developers using the logging framework to log messages for traceability, use the
framework’s addUserVariable(String, Object o) method to pass variables that will help
diagnosing and grouping messages within a context.

• The framework must support extended functionality to provide capabilities for logging
this message either synchronously or asynchronously and if database persistence is
chosen during deploy time, these log messages will be persisted to a data store.

Detailed System Design

Version 1.12 06/13/2014 87

4.8 COTS Packages

The following table summarizes the various software components including commercial-of-the-
shelf (COTS) packages used in MTS.

COTS module or
application

Reused COTS
Template

Benefits List

Application Server JBoss Application
Server

Provides a highly scalable, highly
available controlled environment.

Tight integration into the Eclipse IDE.

Workflow jBPM Ensures data integrity in a
collaborative environment.

Reporting Jasper Reports

Apache Commons
Logging

Apache open source Industry standard mechanism to log
informational, debug and error
messages.

Fine grained control on logging by
severity, package, class, or method.

MySQL Database Server

4.9 Components

The respective use case document describes all the components including interface and reusable
components. Use case documentation details the following for all impacted components:

• J2EE Components – Listed by Components Name with a Type and Description
definition.

• User Interface Components – Listed by Business Component Name with a Design
Pattern and Component Action definition. It also lists the detail of the UI Component to
include navigation and a profile or each panel (.mxml) (and panel image).

A summary of each use case can be found in Section 4, Detail Design. The following Eclipse
projects contain the packages and modules related to each component defined in the Use Case
documentation.

• MTS_App.

• MTS_EJBApp.

• MTS_WebApp.

Detailed System Design

Version 1.12 06/13/2014 88

4.9.1 Component ID and Component Name

Refer to the respective Eclipse project for a listing of components, packages, and modules
contained within each project.

4.10 Interfaces

The MTS System Architecture document describes component interfaces.

Detailed System Design

Version 1.12 06/13/2014 89

5 Detailed Design

This section contains an overview of the detailed design for MTS requirements. This detailed
design refines the high level design presented in the MTS General System Design document.
MTS development will consists of the following tracks:

• J2EE – Presentation and application layer. The only business rules within this layer are
related to data presentation and preservation and enforcement of data integrity.

• Reports – All user reports.

• Database – Data Persistence.
MTS is comprised of twelve (12) functional areas designed to support the various operational
areas of child support enforcement for tribal organizations. All design elements of MTS
business and system functionality is captured in use case specification documentation. This
documentation describes the various usage scenarios, focusing on a specific application area. It
also contains descriptions and diagrams of J2EE data components which comprise the
application layer of the MTS design. All use cases which encompass interactive and background
processes of the MTS design are presented in this section, categorized as follows;

• Case Management.

• Locate Management.

• Paternity Establishment.

• Order Establishment.

• Enforcement.

• Financial Management.

• Application Management.

• Document Generation.

• Security & Administration.

• Common Functions.

• Third Party Maintenance & Configuration.

• Reporting.
Each Use Case has a detailed design document including the data model for all schemas.
Individual Use Case documents are available from OCSE.

Detailed System Design

Version 1.12 06/13/2014 90

Case
Management

Enforcement

Financial
Management

Locate
Management

Third Party
Maintenance & Config

Common
FunctionsPaternity

Establishment

Reporting

Security &
AdministrationOrder

Establishment

Document
Generation

Application
Management

MTCSE

Case
Management

Enforcement

Financial
Management

Locate
Management

Third Party
Maintenance & Config

Common
FunctionsPaternity

Establishment

Reporting

Security &
AdministrationOrder

Establishment

Document
Generation

Application
Management

MTCSE

Exhibit 5-0: MTS Design Functional Areas

Detailed System Design

Version 1.12 06/13/2014 91

5.1 Case Management
The Case Management component supports all defined requirements for case intake and update
processing. It provides an access mechanism utilized by the caseworker to enter applications for
child support services and set up child support cases, update case information, perform referrals
and third party searches, among other functions.

Exhibit 5-1 diagrams the use cases which comprise the functionality of Case Management, as
required by the General System Design and System Requirements Specification documents:

• Case Consolidation.

• Case Information Request.

• Case Intake.

• Case Management.

• Case Quick Locate.

• Case Referral Process.

• Participant Demographics.

• Participant Income & Assets.

• Participant Address.

Case
Consolidation

Case Information
Request Case Intake

Case
Management

Case Quick
Locate

Case Referral
Process

Participant
Demographics

Participant Income
& Assets

Participant
Address

Case
Consolidation

Case Information
Request Case Intake

Case
Management

Case Quick
Locate

Case Referral
Process

Participant
Demographics

Participant Income
& Assets

Participant
Address

 Exhibit 5-1: Case Management Use Cases

Detailed System Design

Version 1.12 06/13/2014 92

5.1.1 MTS Use Case: Case Consolidation

Summary

This use case is comprised of processing that supports caseworkers in managing and
consolidating duplicate child support cases. When the caseworker decides to consolidate two
child support cases, the system will support the caseworker in selecting two cases for a side-by-
side comparison and consolidating the cases.

Approach

Caseworkers access UI panels to perform the activities of case consolidation. The system only
allows the authorized caseworker or supervisor to consolidate duplicate cases. The caseworker
can only update his/her assigned cases while the caseworker supervisor can manage any case.

Caseworkers must perform a generic case search and select two cases for comparison and
consolidation. The panel displays a case overview including participants on the case. The
caseworker indicates one case as a duplicate case, wherein its status is then set to Closed.

The Case Consolidation module generates documents and events as defined by the rules-based
logic described within Section 2, Software Design of the Use Case document.

This module creates, reads, updates, and/or deletes data from MTS tables as depicted in Section
3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Case
Consolidation

MTS_UC_Case
Consolidation.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 93

5.1.2 MTS Use Case: Case Information Request

Summary

This use case is comprised of processing that supports caseworkers with information requests
from other entities. It provides for generation of letters and ticklers as part of the Case Intake
and Update, Order Evaluation, and Desktop Review business processes.

Approach

Caseworkers access UI panels to perform the activities of case information requests. The panels
allow caseworkers to produce a Request for Additional Information Letter (#77) which may be
addressed to the referring jurisdiction, the referring agency, and/or to one or more participants in
the case. Once a letter is generated, the module creates an Information Request Tickler for
monitoring its disposition and follow-up.

The Case Information Request implementation uses the DocumentGenerationWebService to
create the Request for Additional Information Letter (#77) and TicklerManagerWebService to
create the Information Request Tickler.

This module generates ticklers and documents as defined by the rules-based logic described
within Section 2, Software Design of the Use Case document.

The module creates, reads, updates, and/or deletes data from MTS tables as depicted in Section
3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Case
Information Request

MTS_UC_Case Information
Request.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 94

5.1.3 MTS Use Case: Case Intake

Summary

This use case encompasses of all the processes of MTS case intake functionality, including case
creation and assessment to determine the next appropriate action on a case.

Approach

Caseworkers create a new case through creation of new participants and/or matching existing
participants. The system assists in determining jurisdiction, handling Temporary Assistance for
Needy Families (TANF) referrals, request additional case related information and support quick
locate requests. The system will automatically assign unique ID’s to each new participant and
case created. During the case intake process, the system automatically assigns the case to a
caseworker based on pre-defined rules and creates the necessary documents and ticklers, and
“New Case” history event.

The Case Intake module creates, reads, updates, and/or deletes data from the MTS data stores as
depicted in Section 3, Database of the Case Intake Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Case Intake MTS_UC_Case Intake.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 95

5.1.4 MTS Use Case: Case Management

Summary

This use case is comprised of processing to support caseworkers in managing the numerous
actions affecting the status or organization of an established case. It allows the worker to
redirect payments, consolidate a case, transfer a case, and closing a case. It also monitors
responses to actions on a case and determines the next action that should be taken on a case.

Approach

Caseworkers navigate through a series of UI panels that display a summary of information on a
selected case and its participants. This process allows workers to perform the following actions:

• View case participants and their demographics.

• View Case Events.

• View and Manage Case Notes.

• View and Manage Ticklers.

• View and Manage Service of Process.

• View and Print Documents.

• View and Manage Hearings.
The Case Management module generates tickler, documents and events as defined by the rules-
based logic described within Section 2, Software Design of the Use Case document.

This module creates, reads, updates, and/or deletes data from MTS tables as depicted in Section
3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Case
Management

MTS_UC_Case
Management.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 96

5.1.5 MTS Use Case: Case Quick Locate

Summary

This use case is comprised of processing that supports caseworkers with quick-locate requests
from other jurisdictions. It provides for quick-locate processing for locate-only referrals from a
state IV-D agency or another tribe’s IV-D agency (Quick Locate) without establishing a case.

Approach

Caseworkers access UI panels to perform the activities of quick locate. The panels allow
caseworkers to search for a referent and to generate Quick Locate Response Letters (#277) either
with the referent information or with a request for further information.

Caseworkers perform searches based on the following key data elements:

• Participant Name.

• Participant Social Security number (SSN).

• Participant Date of Birth (DOB).
The module interfaces with the Member Match function to search in the participant database to
match the person based on the data entered. It returns any matching participant information for
display and performs one of the following actions based on the search outcome:

• If the Member Match function successfully finds the participant, the module generates a
Quick Locate Response Letter (#277) with the participant’s name and address.

• If the member match function cannot find the participant and search was based on partial
data entered by the caseworker, the module generates a Quick Locate Response Letter
(#277) with a message “Insufficient Information Provided”, to the referring jurisdiction
requesting further information. The system will prompt the caseworker to set a Foreign
Referral Tickler.

• If the Member Match function cannot find the participant, the module creates a new
participant (saves the data in the database) and generates a Quick Locate Response Letter
(#277) with the message “Participant/Referent Not Found”.

The Case Quick Locate module generates ticklers and documents as defined by the rules-based
logic described within Section 2, Software Design of the Use Case document.

This module creates, reads, updates, and/or deletes data from MTS tables as depicted in Section
3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Case Quick
Locate

MTS_UC_Case Quick
Locate.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 97

5.1.6 MTS Use Case: Case Referral Process

Summary

The case referral process operates within the Case Intake and Update Process as a scheduled
background component that executes at pre-defined intervals. This component handles
processing related to Custodial Parent (CP) cooperation in TANF cases. This component
interfaces with other functional areas for referral processing using the business process model
framework.

Approach

This process supports the user in generating documents and setting statuses related to CP
cooperation in TANF cases. The case referral process can be invoked from the following
functions:

• Case Intake.

• Paternity Interview.

• Case Transfer.
This module will perform the following actions:

1. If the case is TANF and CP has cooperated, the module generates a Notice of Cooperative
Status (#15), a Welcome Letter – NCP (#12), and a Welcome Letter - CP (#469).

2. If the case is TANF case and CP has not cooperated and Good Cause has not been
established, the module generates a Non-Cooperation Warning Letter (#14) and sets a Non-
Cooperation Tickler.

3. If the case is TANF case, the CP has not cooperated, and Good Cause has been established,
the module sets the Case Status to “Suspended” and generates a Notice of Cooperative Status
(#15), and sets a Good Cause Tickler.

4. Any change in cooperative status causes the module to create a Cooperative Status Event.

The Case Referral Process module generates ticklers, documents, and events as defined by the
rules-based logic described within Section 2, Software Design of the Use Case document.

This module creates, reads, updates, and/or deletes data from MTS tables as depicted in Section
3, Database of the Use Case Document.

The specified MTS applications invoke the case referral process as part of the business process
modeling framework within the system. The business process template is initiated within the
application that performs all the necessary actions and generates the required documents.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Case Referral
Process

MTS_UC_Case Referral
Process.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 98

5.1.7 MTS Use Case: Participant Demographics

Summary

This use case is comprised of processing that supports caseworkers in managing participant
personal data details during case setup and case maintenance.

Approach

Caseworkers access UI panels to perform the activities of participant demographics maintenance.
The panels allow caseworkers to add a participant, view, enter or modify participant personal
data. The system automatically assigns a new unique identifier to each participant added to the
system. The Demographics panel, when used in conjunction with the Member Match Search
popup, will prevent creating duplicate participants in the system. The Demographics panel will
allow the caseworker to enter data for an NCP, CP, or a child.

This process allows workers to perform the following actions:

• Add/Update Participant Demographics.

• Manage Phone Numbers.

• Manage Email Addresses.

• Maintain Addresses.

• Maintain Earned Income Information.

• Maintain Assets Information.

• Maintain Health Insurance Information.
The Participant Demographics module creates, reads, updates, and/or deletes data from MTS
tables as depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Participant
Demographics

MTS_UC_Participant
Demographics.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 99

5.1.8 MTS Use Case: Participant Income and Assets

Summary

This use case is comprised of processing that supports caseworkers in managing participant
earned and unearned income data including multiple sources and amounts. The system also
allows entry and maintenance of vehicle data and accounts in financial institutions.

Approach

Caseworkers access UI panels to perform the activities of participant income and assets
maintenance. The panels allow caseworkers to view, add, or modify participant income and
assets. The system provides the capability for entry of multiple sources of income and supports
entry of participant assets. Caseworkers may view lists of earned and unearned income sources
and a list of available assets. The panels provide a mechanism to search the appropriate third
party tables using a generic search screen and associate a particular income or asset entry with
the selected third party entry.

This process allows workers to perform the following actions:

• View/Add/Modify Participant Earned Income.

• View/Add/Modify Participant Unearned Income.

• View/Manage Participant Assets:
o Add/Modify Bank Account.

o Add/Modify Vehicle.

The Participant Income and Assets module creates, reads, updates, and/or deletes data from MTS
tables as depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Participant
Income and Assets

MTS_UC_Participant Income and
Assets.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 100

5.1.9 MTS Use Case: Participant Address

Summary

This use case is comprised of processing that supports caseworkers in managing all types of
addresses for participants and perform the necessary business functions when address changes
are performed.

Approach

Caseworkers access UI panels to perform the activities of participant address maintenance. The
panels allow caseworkers to view, add, or modify participant residential and mailing addresses.
The system also provides the capability for multiple instances of address information for
participants.

For each case and participant, the system will suppress the address to be printed on documents if
the Family Violence Indicator is set. Also, the system will ensure that only the caseworker or the
caseworker supervisor can view the participant address. If the CP has requested that access to
his or her address should be restricted, the system will record this through the Address
Suppression Indicator. If the Address Suppression Indicator is set for a case, participant address
information will not be printed on the documents.

The Participant Address Maintenance module generates ticklers, documents, and events as
defined by the rules-based logic described within Section 2, Software Design of the Use Case
document.

This module creates, reads, updates, and/or deletes data from MTS tables as depicted in Section
3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Participant
Address Maintenance

MTS_UC_Participant
Address_Maintenance.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 101

5.2 Locate Management
The locate management component of the MTS application will support all defined requirements
for participant location efforts, including outbound letter generation to state, federal and private
agencies.

Exhibit 5-2 diagrams the use case which comprises the functionality of Locate Management, as
required by the GSD and SRS document 4.2.1 Locate.

LocateLocate

Exhibit 5-2: Locate Management Use Case

Detailed System Design

Version 1.12 06/13/2014 102

5.2.1 MTS Use Case: Locate

Summary

This use case is comprised of processing that supports caseworkers in locating participants,
verifying addresses, locating employers, and verifying employment. It will automatically
monitor the response time to outgoing documents and monitor the amount of time the case has
spent in the locate function. The system will also provide ticklers to the caseworker.

Approach

Caseworkers access UI panels to perform the activities of locate. The panels allow caseworkers
to enter participant address, perform address verification, enter employer address, and perform
employment verification.

Caseworkers may perform the following actions to invoke locate processes within this module:

• Participant Address: Caseworkers can view and enter participants address and case notes
data (automatically search the address). The module generates events as required. The
module produces Locate Letters, Child Support Enforcement Transmittal #1 (#248), and
the Tribal Enrollment Verification Form (#73), and creates a Locate Letter Tickler for all
the letters sent.

• Address Verification: Module generates a Postmaster Letter (#468) and sets a Postmaster
Letter Tickler when a new, changed, or unverified mailing address is entered for a
participant and allows the caseworker to mark addresses as verified.

• Employer Address: Caseworkers can view and enter information on employers of
participants and case notes (automatically search the employer) and enter instances of
successful manual locate attempts.

• Employment Verification: Caseworkers can view and enter employment status
information, generate an Employment Verification Letter (#6), generate an Employment
Letter Tickler, and mark employment as verified.

The Locate Module generates ticklers, documents, and events as defined by the rules-based logic
described within Section 2, Software Design of the Use Case document.

This module creates, reads, updates, and/or deletes data from MTS tables as depicted in Section
3, Database of the Use Case Document.

The locate design implementation uses the LocateWebService for this module as well as the
DocumentGenerationWebService to generate documents and the TicklerManagerWebService to
create ticklers.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Locate MTS_UC_Locate.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 103

5.3 Paternity

The Paternity component will automatically initiate and track paternity establishment and
generate documents related to the establishment of paternity. It will allow workers to record and
maintain data concerning facilitation, stipulation, and genetic tests, among other data. It will
automatically generate completed legal documents and notices and initiate service of process. It
will document unsuccessful attempts to serve process on located NCPs.

Exhibit 5-3 diagrams the use cases which comprise the functionality of paternity, as required by
the GSD and SRS documents:

• Paternity Data Entry.

• Paternity Documents.

• Paternity Facilitation.

• Paternity Genetic Testing.

• Paternity Stipulation.

Paternity Data
Entry

Paternity
Documents

Paternity
Facilitation

Paternity Genetic
Testing

Paternity
Stipulation

Paternity Data
Entry

Paternity
Documents

Paternity
Facilitation

Paternity Genetic
Testing

Paternity
Stipulation

Exhibit 5-3: Paternity Use Cases

Detailed System Design

Version 1.12 06/13/2014 104

5.3.1 MTS Use Case: Paternity Data Entry

Summary

This use case is comprised of processing to support caseworkers with entry of data related to
paternity and the generation of documents related to paternity interviews and appointments.

Approach

Caseworkers access UI panels to perform the activities of paternity data entry. The panels allow
caseworkers to capture paternity information concerning the child, generate appointment letters
and schedule interviews.

The panels allow caseworkers to view, add or modify the following information:

• Current Spouse Name (CP and NCP).

• Marital Status Data.

• Sexual Relationship Data.

• Child Birth Data.

• Child Father’s name.

• Paternity Data.

• Stipulation Data.
Paternity data that is added or modified through the panels generates a Paternity Information
Event.

This module also supports the caseworker in the scheduling of a Paternity Interview.

Using the common Document Generation Interface, caseworkers can select and generate the
Paternity Interview Letter – First (#276) and Paternity Interview Letter – Second (#278) to
prompt the CP to schedule a Paternity Interview. This module sets the corresponding ticklers
(Paternity Interview One Tickler and Paternity Interview Two Tickler) through the common
Tickler Interface.

The caseworker may schedule the Paternity Interview appointment using the common Calendar
Function. The caseworker selects and generates the Appointment Letter – Paternity – CP (#492).

After a Paternity Interview has been conducted, the module allows recording of a Paternity
Interview Event.

The Paternity Data Entry module generates ticklers, documents, and events as defined by the
rules-based logic described within Section 2, Software Design of the Use Case document.

It creates, reads, updates, and/or deletes data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

The paternity data entry design implementation uses the PaternityWebService for this module as
well as the DocumentGenerationWebService to generate documents and the
TicklerManagerWebService to create ticklers.

Detailed System Design

Version 1.12 06/13/2014 105

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Paternity
Data Entry

MTS_UC_Paternity Data
Entry.doc

Alfresco System -> MTS ->
Design – Detail Design

5.3.2 MTS Use Case: Paternity Documents

Summary

This use case is comprised of processing that supports caseworkers with generation of
documents to support the court process for making a finding of paternity.

Approach

Caseworkers access UI panels to perform the activities of paternity document generation. They
use the common Document Generation Interface to generate facilitation documents and common
Tickler Interface to generate the related ticklers.

This module supports the caseworker generation of the following paternity documents:

• Letter to Establish Paternity and Child Support (#112).

• Petition to Establish Paternity and Child Support (#151).

• Paternity and Child Support Order (#498).

• Petition to Establish Paternity (#289).

• Paternity Order (#293).

• Summons – Paternity (#153).

• Motion for Genetic Testing (#290).

• Order for Genetic Testing (#543).

• Motion to Dismiss (#491).

• Order to Dismiss (#490).

• Motion for Continuance (#171).

• Order for Continuance (#544).

• Voluntary Service Acceptance Letter (#300).

• Affidavit of Mailing (#508).

Detailed System Design

Version 1.12 06/13/2014 106

The Paternity Documents module generates documents as defined by the rules-based logic
described within Section 2, Software Design of the Use Case document.

It reads data from MTS tables as depicted in Section 3, Database of the Use Case Document.

The paternity documents design implementation uses the DocumentGenerationWebService to
generate documents.

5.3.3 MTS Use Case: Paternity Facilitation

Summary

This use case is comprised of processing that supports caseworkers with generation of
documents to encourage participants to voluntarily acknowledge paternity and their child support
obligation. This module also monitors responses to these letters and supports the scheduling of
facilitation meetings with participants.

Approach

Caseworkers access UI panels to perform the activities of paternity facilitation. The panels allow
caseworkers to select next appropriate facilitation action and use the common Document
Generation Interface to generate facilitation documents and common Tickler Interface to
generate the related ticklers.

This module supports the caseworker with the following:

• Generation of a Voluntary Acknowledgement of Paternity Letter – First (#287). The
module sets a VAP Letter One Tickler when this letter is generated.

• Generation of a Voluntary Acknowledgement of Paternity Letter – Second (#513). The
module sets a VAP Letter Two Tickler when this letter is generated.

• Scheduling of a voluntary genetic test through the common Calendar Function and the
generation of a Voluntary Genetic Test Request (#28).

• Scheduling of a facilitation meeting through the common Calendar Function.

• Creation of a Facilitation Meeting Event whenever a facilitation meeting has been
conducted.

The Paternity Facilitation module generates ticklers, documents, and events as defined by the
rules-based logic described within Section 2, Software Design of the Use Case document.

It creates, reads, updates, and/or deletes data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

The paternity facilitation design implementation uses the DocumentGenerationWebService to
generate documents and the TicklerManagerWebService to create ticklers.

Detailed System Design

Version 1.12 06/13/2014 107

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Paternity
Facilitation

MTS_UC_Paternity
Facilitation.doc

Alfresco System -> MTS ->
Design – Detail Design

5.3.4 MTS Use Case: Paternity Genetic Testing

Summary

This use case is comprised of processing that supports caseworkers with the scheduling of
genetic tests and generation of documents to support genetic testing.

Approach

Caseworkers access UI panels to perform the activities of paternity genetic testing. The panels
allow caseworkers to schedule genetic testing, record the results of testing, and maintain
schedules of genetic testing laboratories.

The series of panels within paternity genetic testing allow the caseworkers to perform the
following actions:

• Schedule Genetic Tests.

• Record Genetic Test Results.

• Record Genetic Test Schedule.

• Schedule Genetic Testing.

The module allows caseworkers to schedule a Genetic Test and generate an Appointment Letter
for Genetic Test. If an appointment is missed, the module allows the worker to update the
appointment and thus set an Appointment Missed Tickler through the Tickler Interface. The user
interface for Genetic Testing Schedule uses the Calendar functionality in the system to schedule
a Genetic Test.

Genetic Test Results

The module allows for capture of the following regarding genetic test results:

• Date the test was conducted.

• Time the test was conducted.

• Test Type.

• Docket number (for the case).

• Test Results (positive or negative).

• Date the test was ordered.

Detailed System Design

Version 1.12 06/13/2014 108

If results are negative, a Paternity not Established Tickler is set for the caseworker.

Genetic Test Schedule

Caseworkers view calendar of testing labs and schedule genetic testing. Data to capture and
process lab availability data is modeled in the Calendar Use Case.

The Paternity Genetic Testing module generates ticklers, documents, and events as defined by
the rules-based logic described within Section 2, Software Design of the Use Case document.

It creates, reads, updates, and/or deletes data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

The paternity genetic testing design implementation uses the DocumentGenerationWebService
to generate documents and the TicklerManagerWebService to create ticklers.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Paternity
Genetic Testing

MTS_UC_Paternity Genetic
Testing.doc

Alfresco System -> MTS ->
Design – Detail Design

5.3.5 MTS Use Case: Paternity Stipulation

Summary

This use case is comprised of processing that supports caseworkers with generation of
documents to support voluntary acknowledgment of paternity and stipulations to paternity and
child support.

Approach

Caseworkers access UI panels to perform the activities of paternity stipulation. The panels allow
caseworkers to select next appropriate stipulation action and use the common Document
Generation Interface to generate facilitation documents and common Tickler Interface to
generate the related ticklers.

This module supports the caseworker with the following:

• Generation of the Voluntary Acknowledgement of Paternity – NCP (#533). If paternity
is acknowledged, the module creates a Voluntary Acknowledgement Event.

• Generation of a Hearing Waiver – Paternity (#344), a Stipulation to Paternity (#285), and
a Paternity Order (#293) for judicial review (if the NCP wishes to stipulate to paternity,
but has not requested a hearing or a genetic test).

• Generation of a Hearing Waiver – Paternity (#344), a Stipulation to Paternity and Child
Support (#495), and a Paternity and Child Support Order (#498) for judicial review (if the
NCP wishes to stipulate to paternity and child support, but has not requested a hearing or
a genetic test).

Detailed System Design

Version 1.12 06/13/2014 109

• Generate a Hearing Waiver – Paternity (#344) and a Stipulation to Paternity with Genetic
Test (#496) (if the NCP wishes to stipulate to paternity with a genetic test).

• Generate a Hearing Waiver – Paternity (#344) and a Stipulation to Paternity and Child
Support with Genetic Test (#497) (if the NCP wishes to stipulate to paternity and child
support with a genetic test).

• Generate a Paternity Order (#293) or a Paternity and Child Support Order (#498) as
appropriate after genetic test results have been received.

• Create a Voluntary Acknowledgment Event when the documents related to voluntary
acknowledgment are generated.

• Create a Stipulation Event whenever the documents related to stipulation are generated.
The paternity stipulation module generates ticklers, documents, and events as defined by the
rules-based logic described within Section 2, Software Design of the Use Case document.

It module creates, reads, updates, and/or deletes data from MTS tables as depicted in Section 3,
Database of the Use Case Document.

The paternity stipulation design implementation uses the DocumentGenerationWebService to
generate documents and the TicklerManagerWebService to create ticklers.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Paternity
Stipulation

MTS_UC_Paternity
Stipulation.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 110

5.4 Order Establishment
The Order Establishment component will allow workers to manage court orders and court
ordered obligations and produce associated documents. It will process information on existing
and prior orders, link multiple orders, and automatically calculate support orders based on
obligation guidelines. It will generate documents to facilitate meetings with participants in
which they voluntarily acknowledge paternity and child support obligations, those among CP
and NCP that stipulate child support. This system will monitor and identify cases for review and
modification, generating a letter and tickler for cases that are due.

Exhibit 5-4 diagrams the use cases which comprise the functionality of Order Establishment, as
required by the GSD and SRS documents:

• Order Data.

• Order Facilitation.

• Order Stipulation.

• Order Documents.

• Order Monitor.

Order Data Order
Facilitation

Order
Stipulation

Order
Documents

Order
Monitor

Order Data Order
Facilitation

Order
Stipulation

Order
Documents

Order
Monitor

Exhibit 5-4: Order Establishment Use Cases

Detailed System Design

Version 1.12 06/13/2014 111

5.4.1 MTS Use Case: Order Data Entry

Summary

This use case is comprised of processing to support caseworkers with search, entry and update of
data related to court orders and obligations.

Approach

Caseworkers access UI panels to perform the activities of order entry and update. The panels
allow caseworkers to view and manage orders and obligations at the case level.

The caseworker can select an order to view details or optionally enter a new order. This module
supports maintenance of multiple orders on each case.

For each order selected, the system will display a list of obligations entered on a given order.
The obligation detail allows entry of a payee, obligation amount, and obligation frequency,
kinship care details, and arrears details.

The caseworker can view and manage orders on those cases where he/she is the assigned
caseworker. The supervisor has the ability to manage orders on any case in the system.

The panels allow caseworkers to perform the following actions:

• View Orders.

• View Obligations for an Order.

• Enter a New Order.

• Enter a New Obligation.

• Guideline Details.
The Order Data Entry module generates events as defined by the rules-based logic described
within Section 2, Software Design of the Use Case document.

It creates, reads, updates, and/or deletes data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Order Data
Entry

MTS_UC_Order Data Entry.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 112

5.4.2 MTS Use Case: Order Facilitation

Summary

This use case is comprised of processing that supports caseworkers with generation of
documents to facilitate meetings with participants in which they will voluntarily acknowledge
paternity and child support obligations.

Approach

Caseworkers access UI panels to perform the activities of order facilitation. The panels allow
caseworkers to select next appropriate facilitation action and use the common Document
Generation Interface to generate facilitation documents and common Tickler Interface to
generate the related ticklers.

The caseworker can generate a Facilitation Letter – First (#298) or a Facilitation Letter – Second
(#299). Producing these documents creates ticklers to monitor for results of the facilitation. The
caseworker can also schedule a meeting with the parties within the case which results in
generation of the Appointment Letter – Order Establishment (#493) or Appointment Letter –
Modification (#529).

The Order Facilitation module generates ticklers, documents, and events as defined by the rules-
based logic described within Section 2, Software Design of the Use Case document.

It creates, reads, updates, and/or deletes data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

The order facilitation design implementation uses the DocumentGenerationWebService to
generate documents and the TicklerManagerWebService to create ticklers.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Order
Facilitation

MTS_UC_Order Facilitation.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 113

5.4.3 MTS Use Case: Order Stipulation

Summary

This use case is comprised of processing that supports caseworkers with generation of
documents and events for the CP and NCP to stipulate to child support. The system will support
this action by using the common process for document generation.

Approach

Caseworkers access UI panels to perform the activities of order stipulation. The panels allow
caseworkers to select next appropriate stipulation action and use the common Document
Generation Interface to generate facilitation documents and common Tickler Interface to
generate the related ticklers. Caseworkers will generate the following documents used in
establishing a support obligation through judicial review:

• Stipulation to Child Support (#158).

• Hearing Waiver – Enforcement (#296).

• Petition for Support Order (#538).

• Child Support Order (#304).

The Order Stipulation module generates ticklers, documents, and events as defined by the rules-
based logic described within Section 2, Software Design of the Use Case document.

It creates, reads, updates, and/or deletes data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

The order stipulation design implementation uses the DocumentGenerationWebService to
generate documents and the TicklerManagerWebService to create ticklers.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Order
Stipulation

MTS_UC_Order Stipulation.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 114

5.4.4 MTS Use Case: Order Documents

Summary

This use case is comprised of processing that supports caseworkers with generation of
documents to support court proceedings for establishing a child support order. Workers will use
functionality modeled in the Document Generation process to select and produce order
documents.

Approach

Caseworkers access UI panels to perform the activities of manual order document generation.
They use the common Document Generation Interface to generate documents to support court
proceedings for establishing a child support order.

This module supports the caseworker in generating the following order documents:

• Voluntary Service Acceptance Letter (#300).

• Hearing Notice – Order Establishment (#484).

• Petition for Support Order (#538).

• Petition to Determine Arrears and Judgment (#179).

• Order to Reduce Arrears to Judgment (#541).

• Child Support Order (#304).

• Motion for Continuance (#171).

• Order for Continuance (#544).

• Motion to Dismiss (#491).

• Order to Dismiss (#490).

• Summons – Order Establishment (#487).

• Affidavit of Mailing (#508).

• Affidavit of Direct Payments (#104).

• Financial Affidavit (#204).

• Joint Stipulation for Modification (#140).

• Letter Acknowledging Review Request (#325).

• Letter Advising of No Change (#330).

• Order for Modification (#329).

• Order to Exclude (# 545).

• Review and Modification Request (# 53).
The Order Documents module generates documents as defined by the rules-based logic described
within Section 2, Software Design of the Use Case document.

Detailed System Design

Version 1.12 06/13/2014 115

It reads data from MTS tables as depicted in Section 3, Database of the Use Case Document.

The order documents design implementation uses the DocumentGenerationWebService to
generate documents.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Order
Documents

MTS_UC_Order Documents.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 116

5.4.5 MTS Use Case: Order Monitor

Summary

The order monitor process is a scheduled background component that executes at pre-defined
intervals. This component analyzes each case and generates the appropriate Case Function
changes and any related ticklers and history events.

Approach

This process operates to analyze the actions and data of all qualifying cases to determine if a case
function status change is warranted. The process performs the actions (in the following order):

• Sets the Case Function to “Locate” if an NCP has no verified address or no verified
employer.

• Sets the Case Function to “Paternity” if an NCP has been located and has employment
verified but does not have paternity established or presumed.

• Sets the Case Function to “Order Establishment” if an NCP has been located and has
employment verified and has paternity established or presumed.

• Sets the Case Function to “Enforcement” if there is a change in Case Function.

If the case has been inactive and in an “Open” status for the number of days specified in
configuration data, the order monitor will set a Case Inactivity Tickler.

This module generates ticklers, events, and case function status as defined by the rules-based
logic described within the Use Case document.

The Order Monitor module creates, reads, and/or updates data from MTS tables as depicted in
Section 3, Database of the Use Case Document.

It operates within the MTS as a scheduler component. The scheduler framework contains an
XML configuration file that defines the schedule policies for the components to be scheduled.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Order
Monitor

MTS_UC_Order Monitor.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 117

5.5 Enforcement
The Enforcement component serves to monitor compliance with support orders and support the
initiation of enforcement actions based on tribal policy. It will support enforcement remedies
including income withholding, contempt proceedings, license suspension, asset seizure, state
referrals, and others as defined in the system configuration. It will monitor compliance with
support orders, initiate enforcement actions, and generate documents. In cases where previous
enforcement attempts have failed, it will re-initiate enforcement actions.

Exhibit 5-5 diagrams the use cases which comprise the functionality of Enforcement, as required
by the GSD and SRS documents:

• Enforcement.

• Enforcement Monitor.

Enforcement Enforcement
MonitorEnforcement Enforcement
Monitor

Exhibit 5-5: Enforcement Use Cases

Detailed System Design

Version 1.12 06/13/2014 118

5.5.1 MTS Use Case: Enforcement

Summary

This use case is comprised of processing that supports caseworkers in pursuing the enforcement
remedies provided by tribal policies. This module allows the caseworker to initiate enforcement
actions for each case based on the tribal arrears thresholds and other criteria as given in
Configuration Data. The enforcement remedies include income withholding, contempt
proceedings, license suspension, seizure of assets, referrals to states, and other tribe-specific
remedies.

Approach

Caseworkers access UI panels to perform the activities of enforcement. The panels allow
caseworkers to initiate enforcement actions for each case based on the tribal arrears thresholds
and other criteria as given in Configuration Data. The panels support entry and recording of data
related to enforcement actions. The module generates ticklers to alert the caseworker of
enforcement actions and to change Case Function as appropriate in response to changes in case
data.

This module supports the following enforcement actions:

• Income Withholding.
o Foreign Income Withholding.

o Voluntary Income Withholding.

o Immediate Income Withholding.

o Garnishment.

• Contempt.

• License Suspension.

• Seizure.

• Release.

The enforcement module generates ticklers, documents, and events as defined by the rules-based
logic described within Section 2, Software Design of the Use Case document.

It creates, reads, updates, and/or deletes data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Enforcement MTS_UC_Enforcement.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 119

5.5.2 MTS Use Case: Enforcement Monitor

Summary

The enforcement monitor process is a scheduled background component that executes at pre-
defined intervals. It will fetch the enforcement configuration information, analyze all cases, and
determine what enforcement methods are appropriate.

Approach

This module will fetch the enforcement configuration information, analyze all cases, and
calculate what enforcement methods are eligible on a case based on configuration data and NCP
arrears.

It creates, reads, and/or deletes data from MTS tables as depicted in Section 3, Database of the
Use Case Document.

The MTS application scheduler invokes the enforcement monitor process at pre-defined
scheduled intervals. The scheduler framework contains an XML configuration file that defines
the schedule policies for the components to be scheduled.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Enforcement
Monitor

MTS_UC_Enforcement
_Monitor.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 120

5.6 Financial Management
The financial management component supports the required financial transaction processing,
including the entry of collections, distribution, and disbursement of payments toward support
obligations. It will perform routine charging on qualifying accounts, as well as delinquency
testing and generations of letters, billing notices, and quarterly statements. This subsystem
incorporates these features, among others:

• Allows financial workers to post payments, create and maintain employer group models
for posting large numbers of payments, and produce all accounting reports necessary to
balance and generate the daily bank deposit slip.

• Automatically allocates and applies monies to debt accounts in an order as determined by
federal allocation hierarchies and calculates and records reimbursed and un-reimbursed
monies.

• Automatically disburses support payments to clients and third-party agencies, and
provides a tracking mechanism for all checks disbursed through the MTS.

• Allows financial workers and supervisors to correct payments, adjust accounts for an
individual case or participant, and/or perform other actions to correct account imbalances.

• Assists financial workers with reconciling depository accounts by tracking all daily
deposits and disbursements processed in the system.

• Search for obligation accounts that are due, creating a charge transaction and account
adjustment if a balance is due. Check obligation account for timely and complete
collection, generating delinquency letters as required. Check obligation account issuance
of billing notice, if applicable.

• Allows financial workers to view account summary information by case account or
participant account, including collections history and disbursement history.

Exhibit 5-6 diagrams the use cases which comprise the functionality of Financial Management,
as required by the GSD and SRS documents:

• Financial Payment Post.

• Financial Account Charging.

• Financial Delinquency Test Monitor.

• Monthly NCP Billing Notices.

• Financial Account.

• Financial Account Summary.

• Financial Collection Post.

• Financial Deposit Process.

• Financial Pass-through.

• Financial Distribution.

Detailed System Design

Version 1.12 06/13/2014 121

• Financial Disbursements.

• Bank File Extraction & Reconciliation Matching.

• Bank Reconciliation Statement.

• Monthly Check Escheatment.

• Financial Transaction Adjustments.

• Monthly Account History.

• Quarterly Payment History Notices.

Financial
Payment Post

Financial
Account Charging

Delinquency
Test Monitor

Monthly NCP
Billing Notices

Financial
Account

Financial
Account Summary

Financial
Collection Post

Financial
Deposit Process

Financial
Pass-through

Financial
Distribution

Financial
Disbursements

File Extraction
& Recon Matching

Bank Reconciliation
Statement

Monthly Check
Escheatment

Financial Transaction
Adjustments

Monthly
Account History

Quarterly Payment
History Notices

Financial
Payment Post

Financial
Account Charging

Delinquency
Test Monitor

Monthly NCP
Billing Notices

Financial
Account

Financial
Account Summary

Financial
Collection Post

Financial
Deposit Process

Financial
Pass-through

Financial
Distribution

Financial
Disbursements

File Extraction
& Recon Matching

Bank Reconciliation
Statement

Monthly Check
Escheatment

Financial Transaction
Adjustments

Monthly
Account History

Quarterly Payment
History Notices

Exhibit 5-6: Financial Management Use Cases

Detailed System Design

Version 1.12 06/13/2014 122

5.6.1 MTS Use Case: Financial Payment Posting

Summary

This use case is comprised of processing that supports financial workers with batch creation and
payment entry. Workers can create a new batch, record payments, and reconcile and approve a
batch in accordance with tribal policy and regulations.

Approach

Financial workers access UI panels to perform the activities of payment posting. The panels
allow financial workers to create a new batch and record data for each payment (up to 25
payments per batch) within a batch. This module will support the following:

• Search for batches using multiple criteria.

• Allow payments to be applied to one or more cases.

• Save an incomplete batch of payments allowing for retrieval and completion at a later
time.

• Enforce reconciliation of batch item counts and totals prior to approval.

• Allow approval of multiple batches by a supervisor.
Workers navigate through a series of panels during payment entry process for each batch. As
batches are created (or selected) and payments entered, the system will maintain a reconciliation
count of batches and batch amount totals. Reconciled batches will be assigned a “Reconciled”
batch processing status and remain static until approved by a supervisor. Batches that do not
balance will remain in an “Incomplete” status until the batch is manually reconciled.

Reconciliation ensures that balanced accounting entries are created from payment-related
transactions when made available for collections posting. Accepted (reconciled) batches will be
assigned an “Approved” status and remain in a wait state for further processing within the
Collections Posting module.

The Financial Payment Posting module creates, reads, updates, and/or deletes data from MTS
tables as depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Financial
Payment Posting

MTS_UC_Financial Payment
Posting.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 123

5.6.2 MTS Use Case: Account Charging

Summary

The account charging process is a scheduled background component that executes at pre-defined
intervals. It will operate as a daily automatic process (in sequence with other background
processes) to search obligation accounts that are due based on charge date and apply the
appropriate charge amount.

Approach

This module functions to monitor participant obligation accounts which have a monthly
frequency amount due and produce a charge transaction, if due. A monthly charging cycle will
exist for all cases, whereby this module calculates and tracks all ordered frequency amounts as
monthly equivalents during Account Setup and charge accordingly via this function. The use of
standardized monthly amounts is necessary in order to establish a regular charging cycle for
financial monitoring and essential to the distribution process as it allows funds to be prorated
equitably across multiple cases.

The account charging module operates as a pre-defined scheduled process to perform the
following:

• Check the monthly amount due on accounts where the charge date equals the run date on
the obligor’s account to determine if charging is required.

• Debit any balance amount due from obligor’s account into the appropriate debt accounts.

• Apply accrued late payment, interest charges, and fees, as applicable.

• Reset the monthly amount due date in obligor’s account.

• Create an “Account Debited” financial history event record.
The scheduler will administer initiation of this background function, ensuring that it runs at pre-
defined times and in the correct sequence with dependent functions.

The account charging module generates events as defined by the rules-based logic described
within Section 2, Software Design of the Use Case document.

It creates, reads, and updates data from MTS tables as depicted in Section 3, Database of the Use
Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Account
Charging

MTS_UC_Account_

Charging.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 124

5.6.3 MTS Use Case: Financial Delinquency Monitor

The financial delinquency monitor process is a scheduled background component that executes
at pre-defined intervals. It will operate as a daily automatic process (in sequence with other
background processes) to check for collections against financial accounts with recurring current
support and/or ordered arrears payments. It will also generate ticklers and notices on delinquent
accounts.

Approach

This module determines if obligation accounts are due and acts on overdue accounts by
generating a tickler and delinquency notice. It will execute as part of a scheduled daily process
driven by case details captured during the account charging process. The module examines
financial accounts (with an ordered amount) for timely and complete payments from the obligor.
Accounts without collection activity for 35 days will produce a Notice of Delinquency (#203),
set the Account Delinquent Indicator, and set a tickler for the assigned caseworker.

The financial delinquency testing monitor module generates ticklers, documents, and events as
defined by the rules-based logic described within Section 2, Software Design of the Use Case
document.

It creates, reads, and/or updates data from MTS tables as depicted in Section 3, Database of the
Use Case Document.

The MTS application scheduler invokes the financial delinquency monitor process at pre-defined
scheduled intervals. The scheduler framework contains an XML configuration file that defines
the schedule policies for the components to be scheduled.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Financial
Delinquency Monitor

MTS_UC_NCP_Financial_

Delinquency_Monitor.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 125

5.6.4 MTS Use Case: Monthly NCP Billing Notices

Summary

The NCP billing notices process is a scheduled background component that executes at pre-
defined intervals. It will operate as a daily automatic process (in sequence with other
background processes) to determine if monthly billing is due and summarize case obligations
into a billing statement. Billing suppression will be the system default setting for income
withholding cases. Authorized users will be permitted to suppress the monthly bill generation
for any case.

Approach

This module produces a billing statement for each payor case, showing amounts as ordered,
monthly amounts due, and due by date on each remittance coupon. The NCP billing notices
process is performed as part of a scheduled daily process driven by case details captured during
the account charging and delinquency testing processes.

NCP billing notices operates as a scheduled daily process to perform the following:

• Check the case billing indicator to determine if billing is required.

• Summarize case obligations.

• Summarize payments from the prior month.

• Provide remittance coupons to ensure accurate payment identification upon receipt.

• Produce the Billing Notice using the Document Generation function.
Qualifying cases are extracted and amounts summed from event transactions to derive amount
totals. It extracts and merges report amounts, case and participant profile information into a
formatted statement, based on tribal policy.

On-demand printing of notices is supported by functionality contained within the Document
Print Management Use Case. Workers use functionality modeled in the common Document
Generation process to view and print (image file) quarterly payment history notices.

The Financial Billing Notice module generates documents as defined by the rules-based logic
described within Section 2, Software Design of the Use Case document.

It reads and updates data from MTS tables as depicted in Section 3, Database of the Use Case
Document.

The MTS application scheduler invokes the NCP Billing Notice process at pre-defined scheduled
intervals. The scheduler framework contains an XML configuration file that defines the
schedule policies for the components to be scheduled.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: NCP Billing
Notices

MTS_UC_NCP_Billing_Notices.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 126

5.6.5 MTS Use Case: Financial Account

Summary

This use case is comprised of processing that supports financial workers with managing financial
accounts and debt accounts on a selected case. MTS workers use UI panels to select a case and
view accounts. Workers may view and create particular types of debt accounts and put a
financial account on hold or release an account that was on hold.

Approach

Financial workers access UI panels to perform the activities of financial accounts. The panels
allow financial workers to create and maintain fee-type debt accounts, and maintain hold status
information related to financial accounts. The financial account module automatically creates
debt accounts based on obligations created from a court order (during Obligation Setup) or
allocation processing conditions encountered (during Distribution). It will automatically create
or update financial accounts based on the following conditions:

• A new case is created in the system.

• New participants are added to a case.
Workers may update specific information related to an existing debt account, create a new debt
account (creating a debt account is limited to the “Fees” debt category only), or update hold
status information related to an existing financial account.

Newly created and modified debt accounts will create an event transaction and require approval
by financial supervisors (if required by configuration data). Once approved, debt accounts will
become active records for monthly account charging serving as the official financial record for a
case. All financial processing (distribution, charging, delinquency, monthly billing, among
others) will be based upon the information tracked by these accounts. Debt accounts that are
automatically created as part of Obligation Setup are not modifiable, as the obligation
information is court ordered.

The financial accounts module creates, reads, updates, and/or deletes data from MTS tables as
depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Financial
Accounts

MTS_UC_Financial
Accounts.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 127

5.6.6 MTS Use Case: Financial Account Summary

Summary

This use case is comprised of processing that supports financial workers in viewing financial
account information related to a case/participant(s).

Approach

Financial workers access UI panels to perform the activities of viewing financial account
summary data. The panels allow financial workers to review account summary information on
cases or participants. The user interface will be comprised of a panel which displays descriptive
account information related to a case/participant, as dictated by user-defined selection criteria.
Once activated, the panel displays populates nine (9) scrollable data grids whose views can be
dynamically altered based on selection of a new case or member.

This module displays the following case account information:

• Obligation Details.

• Current Support.

• Arrears.

• Judgments.

• Fees.

• Disbursements.

• Balances.

• Case Transactions.

• NCP Transactions.
The financial account summary module reads data from MTS tables as depicted in Section 3,
Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Financial
Account Summary

MTS_UC_Financial_

Account_Summary.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 128

5.6.7 MTS Use Case: Collection Posting

Summary

This use case is comprised of processing that supports financial workers with recording all
collection data associated with a payment item in accordance with tribal policy and regulations.

Approach

Financial workers access UI panels to perform the activities of collection posting. The panels
allow financial workers to enter collection data related to each payment (batch item). This
module will accommodate payments from individuals and/or employers, and will support the
following:

• Searching for payment batches using multiple criteria.

• Allowing a collection to be applied to one or more cases.

• Setting the release date to seven (7) business days if the NSF Indicator is set for a payor.

• Allowing suspension of a collection for subsequent research and adjustment when a
payor is unknown.

• Saving incomplete collection entries for retrieval and completion at a later time.

• Calculating collection totals and amounts.
Financial workers will navigate through a series of panels for posting each payment (batch item).
The system will assign a status code to each collection item based on data entered by the
financial worker. This status indicator will signify the readiness of a collection item for
processing by the distribution processes. An NSF or collection item marked for suspense will
not be processed by the distribution process. “Ready” collection items will be processed by
automated financial distribution.

The financial collection posting module creates, reads, updates, and/or deletes data from MTS
tables as depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Collection
Post

MTS_UC_Collection Post.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 129

5.6.8 MTS Use Case: Deposit Processing

Summary

This use case is comprised of processing that supports financial workers with creating deposits
from approved batches.

Approach

Financial workers access UI panels to perform the activities of deposit processing. The panels
allow financial workers to create deposit records from batches which have been approved in
prior MTS processes (Payment Posting). This module will support the following:

• Search batches using multiple criteria.

• Provide bank depository information about where funds will be placed.

• Functional limit of one batch per deposit (up to 25 deposit items).

• Listing of all deposit batch items for review.

• Allow printing of a deposit slip containing all deposit items using MTS common print
processes.

Financial workers will navigate through a series of panels for deposit of each batch. As batches
are selected for deposit and payments entered, the system will maintain a deposit amount total.

On-demand viewing and printing of deposit slips will be supported by functionality modeled in
the common Document Generation process.

The financial deposit processing module creates, reads, updates, and/or deletes data from MTS
tables as depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Deposit
Processing

MTS_UC_Deposit
Processing.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 130

5.6.9 MTS Use Case: Financial Pass-through

Summary

The financial pass-through process is a scheduled background component that executes at pre-
defined intervals. It will operate as a monthly automatic process to distribute a designated
portion of collections to qualifying current assistance accounts, when configured.

Approach

This module functions as a monthly process to apportion current support monies collected on
behalf of a public assistance recipient, updating appropriate accounts equal to the qualifying
pass-through amount. Pass-through distribution uses system data to determine whether a record
qualifies for pass-through. This function checks for the following, among other criteria:

• The case is a Current Assistance case.

• A tribal TANF distribution has occurred during the past month.

• The pass-through balance for the CP is less than the threshold set by financial
configuration.

Qualifying accounts are updated with the appropriate pass-through amount. The Pass-through
Distribution module will use system data to determine whether a record qualifies for pass-
through.

The system executes financial pass-through as a scheduled process. The scheduler will run this
module on a monthly basis, administering its initiation among the other dependent monthly
accounting processes such as Monthly Account History.

The financial pass-through module generates events as defined by the rules-based logic described
within Section 2, Software Design of the Use Case document.

This module creates, reads, and updates data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Financial
Pass-through

MTS_UC_Financial
_Passthrough.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 131

5.6.10 MTS Use Case: Financial Distribution

Summary

The financial distribution process is a scheduled background component that executes at pre-
defined intervals. It will operate as a daily automatic process to distribute collections on a case
among the appropriate current support, arrears, judgments, and fees accounts automatically based
on an allocation by debt percentage.

Approach

This module functions to direct payment amounts automatically based on a debt percentage
allocation into the respective current support, arrears, judgment, and fees accounts for each case
to satisfy current and past due support obligations. It operates as a scheduled process to perform
the following:

• Identify qualifying payments for distribution processing.

• Allocate payments by debt percentage, as required.

• Distribute payee funds across the respective obligations based on a pre-defined priority
scheme (Distribution Hierarchy).

• Update financial accounts and debt accounts with resultant balances.

• Create financial event records to reflect the account transactions.
The Distribution module determines the proper course of payment distribution by examining
each qualifying payment and associated case for certain conditions, and then distributes payee
funds across the respective obligations based on a pre-defined priority scheme.

The financial distribution process will operate from:

• Distribution Producer.

• Distribution Consumer.
The Distribution Producer will be implemented as a scheduled job that will be invoked at pre-
defined intervals by the scheduler. The producer is implemented to identify qualifying payments
for distribution and posts JMS messages to a JMS Topic jms/DistributionTopic. The Distribution
Consumer is implemented as a Message Driven Bean listening on the JMS Topic
jms/DistributionTopic for incoming messages to be consumed. The consumer implements the
process steps for: preparing debt accounts for distribution, allocating and distributing funds to
Current Support, allocating and distributing funds to assigned arrears (debt accounts with a
frequency amount), allocating and distributing funds to un-assigned arrears (debt account
without a frequency amount), and distributing funds to suspense.

The Financial Distribution module generates events as defined by the rules-based logic described
within Section 2, Software Design of the Use Case document.

This module creates, reads, and updates data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

Detailed System Design

Version 1.12 06/13/2014 132

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Financial
Distribution

MTS_UC_Financial
Distribution.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 133

5.6.11 MTS Use Case: Financial Disbursements

Summary

The financial disbursement process is a scheduled background component that executes at pre-
defined intervals. It will operate as a daily process to automatically disburse payee funds to the
appropriate system-level account, create transaction records of fund transfers, and update tables
to invoke the generation of a paper check.

Approach

This module functions as a scheduled process executed daily direct distributed payment amounts
automatically from payee accounts to the disbursement system-level account. It updates the
appropriate tables to support the generation of support checks, as configured.

The financial disbursement module operates as a scheduled process to perform the following:

• Identify qualifying payments for disbursement processing.

• Perform requisite validations and look-ups of the payee account.

• Create transactions for transfer of payee funds to the appropriate system-level account.

• Update payee and system-level accounts with resultant balances.

• Create a financial event record to reflect the disbursement transaction.
The financial disbursement module generates events as defined by the rules-based logic
described within Section 2, Software Design of the Use Case document.

This module creates, reads, and updates data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Financial
Disbursement

MTS_UC_Financial
_Disbursement.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 134

5.6.12 MTS Use Case: Bank File Extraction & Reconciliation Matching

Summary

This process performs a daily extraction of bank account transactions and matching against MTS
tables as part of the account reconciliation process. It will retrieve all bank transactions created
since the last extraction and place them into a MTS table format and perform a match to debit
and credit transactions.

Approach

The Bank Statement Extraction and Reconciliation Matching process is a scheduled process that
runs on a daily basis. It supports the MTS bank reconciliation process by providing a method for
electronically extracting and routing account statement information using an open financial
exchange (OFX) communication protocol.

This function will serve to coordinate HTTP messages between tribal agency and banking
institution to obtain all new account transactions. These transactions are then formatted into
MTS tables and reconciled against outstanding disbursement (payments) and deposit item
(deposits) records.

The design for Bank Statement Extraction & Reconciliation Matching uses the OFX protocol
standards (as described by OFX specification 2.1.1) and sign-on information to access financial
transaction information and load MTS files for subsequent reconciliation processing. The
process is modeled to fetch the bank transaction statement data over a secure HTTPS connection
after sending the sign-on information to the designated financial institution.

The Bank Statement Extraction and Reconciliation process will use the standard Java
connectivity API and the Open Source implementation of the XMLBeans technology to retrieve
and process the bank transaction statement. The process will run as an automatic nightly
process.

This function will run as a daily background process to perform the following:

1. Securely connect (HTTPS) and download the transactions from the Financial Institution
based on a given start date and end date (Note: The start date will be the last Run date
and the end date is the end of current day).

2. Parse the returned XML file, identify the transactions, and process them.

3. Create ticklers (Success or Failure).

Update the Reconciliation table with the processing results and generate a reconciliation report.

This module creates, reads, and updates data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

Detailed System Design

Version 1.12 06/13/2014 135

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Bank File
Extraction & Recon
Matching

MTS_UC_Bank File Extraction &
Recon Matching.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 136

5.6.13 MTS Use Case: Bank Reconciliation Statement

Summary

This module allows authorized financial workers to access panels to view results from the daily
automated reconciliation match, search transactions, resolve mismatches, create a bank
reconciliation statement, and apply adjustment account balances. The panels will display all
reconciled and outstanding deposit items and disbursement checks, including financial
transactions created by the MTS application (system-level receipt transactions) or those derived
from the bank (service charges, fees, interest).

Approach

The Bank Reconciliation module will allow financial workers to perform daily reconciliation of
financial accounts transactions against a bank account statement (following completion of prior
background processes). It is comprised of a series of user-interface panels that display
reconciliation match results and current account balances. Financial workers can search and
view transactions (disbursement checks and deposit receipts) and unmatched records to reconcile
accounts.

This module will operate from the Bank Statement Extraction & Reconciliation Match process
which imports, validates, and reconciles bank statement to all outstanding MTS financial
transactions. Matched transactions are updated to become part of the current day statement
balance calculations.

The File Match Summary panel displays statistics from the recent bank statement extract for both
debit and credit accounts. Financial workers can scroll through the transaction detail and update
unmatched transactions, designating them as either “Reconciled” or “Suspended”. Workers can
produce a File Match Summary Statement.

The Bank Reconciliation Summary panel will summarize the balance of debit and credit
transactions for the statement period, allowing the worker to apply any statement adjustments.
Disbursement checks and debit transactions contained in FIN_DISB_CHEK, are summarized for
reconciliation. Deposit receipts and credit transactions contained in FIN_DEPOSIT_ITEM are
summarized for reconciliation.

This panel also includes list detail of transactions that comprise the summary amount for the
following:

• Unmatched Transactions.

• System-level Receipt Transactions.

• Deposits in Transit.

• Outstanding Disbursements.

• Statement Adjustments.

Transactions not originating in the MTS financial system, such as service charges, interest, and
fees, appear in the respective panel and are included in the account balance calculations.

Detailed System Design

Version 1.12 06/13/2014 137

This function produces a file match summary statement and bank reconciliation statement using
functionality modeled in the common Document Generation process.

The bank reconciliation statement module generates documents as defined by the rules-based
logic described within Section 2, Software Design of the Use Case document.

This module creates, reads, and updates data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

The document is referenced in the table below.

Track Document Name Location

Use Case: Bank
Reconciliation Statement

MTS_UC_Bank Reconciliation
Statement.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 138

5.6.14 MTS Use Case: Monthly Check Escheatment

Summary

Monthly escheatment will search and set qualifying disbursement transactions to escheatment
status, based on system configuration parameters, as defined by tribal policy. The process will
update financial account balances to reflect the reversal of disbursed funds in support of financial
reporting.

Approach

This process performs a monthly background process to search for unclaimed disbursement
checks that have been dormant for a period based on a system configured timeframe. Funds
from escheatable checks will be reverted to the agency by updating the appropriate system and
participant financial accounts. This function will run as a monthly background process to
perform the following:

• Search for disbursement transactions with an outstanding status for a period greater than
the dormancy holding period defined by system configuration.

• Update FIN_ACCOUNT, FIN_DEBTACCOUNT, and FIN_SYSTEM_ACCOUNT
tables to reflect the reverted amount of the escheated check.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Monthly
Check Escheatment

MTS_UC_Monthy Check
Escheatment.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 139

5.6.15 MTS Use Case: Transaction Adjustments

Summary

This use case is comprised of processing that supports financial workers with performing
adjustments and change actions to resolve account imbalances.

Approach

Financial workers access UI panels to perform the activities of financial transaction adjustment.
The panels support creation of adjustment transactions to accommodate for financial processing
errors or other unexpected exceptions. Workers will select from a set of standard pre-defined
adjustments or construct a non-standard adjustment transaction from user-selected accounts.

Supervisors can search, select, and approve adjustments, which are then applied to MTS tables.
Once applied, automated process invocation for documents and ticklers will commence as
dictated by each adjustment type.

The transaction adjustments module performs the following:

• Allows for standard (pre-defined) or non-standard (ad-hoc) change actions to be
performed on one or more financial accounts.

• Allows supervisors to approve newly created transaction adjustments.

• Allows workers to record adjustment notes.

• Validates user-selected/entered accounts for the desired adjustment action.

• Invokes MTS common processes (based on adjustment type) to reissue checks and
generate NSF letters and ticklers once approved.

Common MTS processes will be employed by this function for searching, worklist/tickler
setting, and documentation generation, as dictated by the adjustment type. This document
references MTS common processes as applicable within the transaction adjustments function.

The transaction adjustments module generates events as defined by the rules-based logic
described within Section 2, Software Design of the Use Case document.

This module creates, reads, and updates data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Financial
Transaction Adjustment

MTS_UC_Financial_

Transaction Adjustment.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 140

5.6.16 MTS Use Case: Monthly Account History

Summary

The monthly account history process is a scheduled background component that executes at pre-
defined intervals. It will record financial account balances and reset month-to-date balances in
support of financial reporting.

Approach

This module will allow for a point-in-time recording of account and debt account balances, and
reset month-to-date debit/credit balances for subsequent accrual. This function will run as a
monthly background process to perform the following:

• Record financial account, debt account and system-level account balances (and other
account-related data) each month.

• Reset month-to-date balances in FIN_ACCOUNT, FIN_DEBTACCOUNT and
FIN_SYSTEM_ACCOUNT tables.

It creates, reads, and/or deletes data from MTS tables as depicted in Section 3, Database of the
Use Case Document.

The MTS application scheduler invokes the monthly account history process at pre-defined
scheduled intervals. The scheduler framework contains an XML configuration file that defines
the schedule policies for the components to be scheduled.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Monthly
Account History

MTS_UC_Monthly Account
History.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 141

5.6.17 MTS Use Case: Quarterly Payment History Notices

Summary

The Quarterly Payment History Notices Process is a scheduled background component that
executes at pre-defined intervals. It will operate as a scheduled process executed quarterly to
determine if payment notices are due and produce a single child support payment history notices
per case.

Approach

This module produces a quarterly statement to current and former assistance recipients who have
assigned rights to support. It calculates the amount of payments collected and collections
disbursed to the family for that quarterly period. This module performs the following:

• Determines if a quarterly payment history notice is due.

• Summarizes collections received from the payor and payments made to the payee for a
single case.

• Produce a Payment History Notice containing:
o Current obligation monthly amount for the payor.

o Amount collected from the payor by month for the reporting quarter.

o Amount paid to the payee by month for the reporting quarter.

o Amount paid to the assignee by month for the reporting quarter.

o Amount of back support owed by child.

o Amount of back support owed for the case.

Qualifying cases are extracted and amounts summed from event transactions to derive totals for
collections and payments by month. It will extract and merge report amounts and case and
participant profile information into a formatted statement, based on tribal policy.

On-demand printing of notices is supported by functionality contained within the Document
Print Management Use Case. Workers use functionality modeled in the common Document
Generation process to view and print quarterly payment history notices.

This module reads or updates data from MTS tables as depicted in Section 3, Database of the
Use Case Document.

The MTS application scheduler invokes the Quarterly Payment History Notice process at pre-
defined scheduled intervals. The scheduler framework contains an XML configuration file that
defines the schedule policies for the components to be scheduled.

Detailed System Design

Version 1.12 06/13/2014 142

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Quarterly
Payment History Notice

MTS_UC_Quarterly_Payment_

History_Notice.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 143

5.7 Application Management
The application management component consists of the central framework that governs
operation of the applications which comprise the MTS. This framework is tightly integrated to
ensure efficient developmental and operational activities. The following subsection introduces
the components involved in application management and provides additional information about
caching, data validation, exception processing, and process scheduling.

Describes processes related to the retrieval, maintenance and control of the application software
and data, as cited in Section I-4.7 of the SRS.

Exhibit 5-7 diagrams the use cases which comprise the functionality of Application
Management, as required by the GSD and SRS documents:

• Application jBPM Framework.

• Application Cache.

• Application Data Validation.

• Application Exception Processing.

• Application Scheduled Process.

• UI Validators.

• Reporting Framework.

Application
jBPM Framework

Application
Cache

Application Data
Validation

Application
Exception Process

Application
Schedule Process UI Validators

Reporting
Framework

Application
jBPM Framework

Application
Cache

Application Data
Validation

Application
Exception Process

Application
Schedule Process UI Validators

Reporting
Framework

Exhibit 5-7: Application Management Use Cases

Detailed System Design

Version 1.12 06/13/2014 144

5.7.1 MTS Use Case: Application jBPM Framework

Summary

jBPM is a JBoss Enterprise Framework that will be used for business process management and
process orchestration to create and automate MTS business processes and services. Developers
will use jBPM to integrate of SOA services and automate workflows in MTS applications to
reduce business process error, speed process execution, and enhance performance. The JBoss
jBPM process designer will graphically represent the business process steps in order to facilitate
a strong collaboration between business analyst and technical developer.

Because MTS business processes have well defined start and end points, and follow a set of pre-
defined paths as part of their execution, such processes lend themselves to be modeled as a
workflow which is a repeatable pattern of activity involving defined roles and resources. The
jBPM workflow engine will deploy workflows and create instances of these processes that
represent real life instances. Workflow modeling will reduce the need for programming logic,
which would otherwise be needed to model, manage, and execute the business processes.

Approach

The jBPM framework supports creation and automation of MTS business processes and services
that will reduce business process errors, speed-up process execution, and enhance overall system
performance. It offers a programmatic structure for designing transactions and executing them
using automated decisions, tasks, and sequence flows.

MTS will implement a process template (process definition) for each workflow identified in the
MTS business environment. These process templates will be deployed on a J2EE compliant
container (JBoss) and managed by a workflow engine (jBPM). MTS has two specific workflow
needs:

• Create process instances and execute portions of it programmatically and leave the
process instance in a pre-defined state. User actions control further execution of these
process instances.

• Monitor all existing process instances in the system. This is a reporting requirement that
will display the overall statues of all process instances (by process template).

jBPM provides APIs for creating, managing, and terminating process instances of the process
definitions. These API is used to meet both the management and reporting requirements.

Both the management and reporting services will be modeled as a stateless session bean that
provides transaction demarcation, pooling, and high availability and serves as a session façade
(design pattern). The actual work to perform is delegated to worker classes that are aware of the
underlying jBPM APIs.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Application
jBPM Framework

MTS_UC_Application jBPM
Framework.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 145

5.7.2 MTS Use Case: Application Cache

Summary

The MTS application will use cache processing to support static information and frequently-used
and infrequently-updated data. The cache configuration will store data such as system start-up
values, security profiles, and valid data values, among others, in order to improve processing
efficiency of the application. MTS will employ a wrapper allowing the use of any commercial
cache program such as the JBossCache, OSCache, or Oracle Java Caching products. The
flexible design allows the cache to be created using any vendor’s caching product, without
impact to the overall design of the MTS application.

This design will implement the JBossCache framework to support application functions used
within the MTS application. Application initialization parameters, valid values, system
messaging, application monitoring, security tables, and security profiles, among others, will be
supported by application caching. While fully configurable, the cache can be easily modified to
be replicated over a cluster to meet the demands of response times and application scalability.

Approach

Caching is a technique for improving the efficiency of an application. The concept of
temporarily storing frequently-referenced data within the application will save the overhead of
repeated trips into the database. The JBossCache framework will be used in MTS to facilitate
caching of frequently accessed and near static data using the TreeCache framework. Application
initialization parameters, valid values, system messaging, application monitoring, security tables,
and security profiles will be supported by application caching.

The use case design will clearly define the process for caching static information and frequently
used data within the MTS application. The cache configuration used in the MTS application will
be configured as a singleton implementation with a method that requires instructions to start and
stop the caching framework. The configureCache method within this singleton is invoked from a
ServletListener class that implements the ServletContextListener with implementation of
contextInitialized and contextDestroyed methods.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Application
Cache

MTS_UC_Application Cache.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 146

5.7.3 MTS Use Case: Application Data Validation

Summary

The MTS application will store all valid field values in separate tables that will relate the data
field and associated valid values for data validation. These values will be loaded into the system
cache upon application startup. The system cache used for storing the validation data will not be
updated directly. All modifications to the validation data must occur directly to data structures
designed to support the validation process and will then be loaded to the cache during startup.

The validation process must be supported by a unique field name referenced by the associated
valid values. The table structures will support the addition, modification and removal of field
names as well as the addition, modification and removal of associated valid values and
associated descriptions. For purposes of the online application and J2EE program execution, this
will be considered static data.

The design implements the data validation process to support application functions used within
the MTS application. Loading the values into the application caching program on startup time
will increase performance of module load-up as well as panel load and flip performance. The
common usage between the Flex 2 application and the J2EE application reduce maintenance and
improves application validation consistency.

Approach

Data validation is a key component of all application design and functionality. Utilizing
common data structures to populate a system cache will provide quick common, enterprise wide
access to all data validation. The implementation of the validation process can be easily
modified and easily scaled for cluster implementation.

As part of the application startup, the CacheInitializerServlet will load all column names and
valid values into the application cache.

Once loaded the ValidValueWebService can be invoked and will return all valid values for the
specified field name passed into the getValues method. The ValidValueVO will contain
columnName, displayName and array of strings for the associated valid values.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Application
Data Validation

MTS_UC_Application Data
Validation.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 147

5.7.4 MTS Use Case: Application Exception Processing

Summary

The exception processing framework within the MTS will accommodate any condition that
causes an exception. The framework will produce the application information, warnings, and
errors encountered during a UI session that will be displayed as messages to the user. The
Exception Handling & Logging framework will be based on Java Exception Hierarchy and
Logging, which is based on the Log4J Logging API.

Approach

The exception processing framework governs the processes for error handling and modes of
detection, isolation, and messaging that may occur during the operation of the application. On-
line, background, and scheduled processes will be capable of handling failures and warnings and
will allow for the requisite error messaging, logging, reporting, and administrator notification as
dictated by the particular error handling process.

System errors, program errors, navigation errors, and logging errors will be tracked and recorded
by the application for system maintenance. Error processing will be evaluated differently based
on the type of error and on the audience associated with the area in which the error occurs.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Application
Exception Processing

MTS_UC_Application Exception
Processing.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 148

5.7.5 MTS Use Case: Application Scheduled Process

Summary

The system will implement a pre-defined scheduled process for each background task that needs
to fulfill a specific business function. These scheduled processes will then be fired by a J2EE
compliant scheduler at pre-defined intervals. These processes are optimized to achieve
maximum throughput for a particular task, usually prioritizing performance over flexibility.

Real-time asynchronous processing performs the necessary business functions and results are
reported to an on-line user when applicable. This approach requires using JMS for messaging
and notification.

The real-time asynchronous framework will provide a generalized mechanism for the following:

• Job Control (including start and stop).

• Parallel Processing.

• Fine-grained Transaction Control.

• Error Handling.

• Job Monitoring.
The scheduled task will be implemented as a stateless session bean. This session bean is
business agnostic. It does not contain any business-specific logic. It provides transaction
demarcation only. The actual work is delegated to a Worker class that is job specific. This
Worker class performs the business logic by acting on the data described by the business
requirement. Worker classes process the data that satisfies the business requirement and create
JMS messages. These messages are consumed by Message Driven Beans (MDBs). Worker
classes act as data readers and the MDB’s act as data modifiers.

Approach

The asynchronous scheduled automated process within MTS provides the framework necessary
to support many requirements as identified in section II-1.9 Timeframes and II-2.6 Ticklers. In
addition to these requirements, the daily, weekly, monthly, quarterly, semi-annual, and annual
reporting requirements will also be supported.

The components below are required to implement an asynchronous scheduled process.

Client
The client requires an asynchronous processing facility from the business objects participating in
a workflow. The client can be any type of application that has the capability to create and send
JMS messages. The client can also be an EJB that needs to invoke another enterprise bean's
business methods in an asynchronous manner. The client can use the services offered by the
Service Locator pattern to look up or create EJBs, JMS services, and JMS objects as necessary.
The client has to implement the Job interface as defined in the scheduler API.

Request
The Request is the message object created by the client and sent to the ServiceActivator via the
message-oriented middleware. According to the JMS specification, the Request is an object that

Detailed System Design

Version 1.12 06/13/2014 149

implements the javax.jms.Message interface. The JMS API provides several message types,
including TextMessages and ObjectMessages that can be used as request objects.

ServiceActivator

The ServiceActivator is the main class of the pattern. It implements the
javax.jms.MessageListener interface, which is defined by the JMS specification. The
ServiceActivator has an onMessage() method that is invoked when a new message arrives. The
ServiceActivator parses (unmarshals) the message (request) to determine what needs to be done.
The ServiceActivator may use the services offered by a Service Locator (see Service Locator)
pattern to look up or create Business Service components such as EJBS.

BusinessObject
BusinessObject is the target object to which the client needs access in an asynchronous mode.
The business object is a role fulfilled by either a session or an entity bean. It is also possible that
the BusinessObject an external service instead of an entity bean. In most EJB applications, a
Session Façade (see Session Façade pattern) may fulfill the role of the BusinessObject to provide
the required services. In such cases, the Service Activator activates the workflow encapsulated
in a Session Façade.

Scheduling Service

The scheduling service will implement a custom job interface to define job arguments to be used
in the execute() method. These values will define the specific characteristics about the job
execution including name, timeframes, and exceptions.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Application
Scheduled Process

MTS_UC_Application Scheduled
Process.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 150

5.7.6 MTS Use Case: UI Validators

Summary

This use case describes how UI validators will operate within MTS applications. Validators
ensure that user-entered data meets specific criteria before the application uses it. Extending the
existing Flex validation to support expanded validation and standardized execution will assist
developers with employing Validators within their user interface panels.

Approach

The document describes how Validators will be implemented in the MTS project and standards
to be used by developers. It describes the following:

• Creating Multiple Fields Validators.

• Building a Custom Validator Class.
Validators are user-interface control components, defined within the Flex API, that govern
client-side data validation. Validators examine input data from the user before transmitting it to
the server.

Data validators are predefined for many common types of user-supplied data, such as a date,
number, and currency values, ensuring that that the values in the fields of a data model meet
certain criteria.

 Flex validators are used within the various MTS applications (.mxml) as follows:

• Trigger validation by using events.

• Trigger validation by using the default event.

• Trigger validation for data bindings.

• Trigger validation programmatically.

• Validate required fields.

• Enable and disable a validator.

• Use data binding to configure validators.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: UI Validators MTS_UC_UI Validators.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 151

5.7.7 MTS Use Case: Reporting

Summary

The use case defines the design for automated reporting and report archival and how the MTS
application will furnish reliable and scalable summary and activity reports. This process focuses
on reports triggered by background processes (that are scheduled and automated rather than
those generated from a particular user action). Several of these scheduled/automated reports will
be delivered as Portable Document Format (PDF) files to MTS users. Batch processes and
asynchronous events (covered in detail in the “Scheduled Process Use Case”) will serve as
triggers for such asynchronous reports.

Approach

During the document creation process the PDF file will be saved to the MTS database. The
saved documents will be created with the responsible worker ID, case ID, and or participant ID
to allow for future printing. The responsible worker will be able to search for documents using
the case history and print the requested document.

The system will implement a pre-defined scheduled process for each background task that needs
to serves a reporting requirement. These scheduled processes will be fired by a J2EE compliant
scheduler at pre-defined intervals. These processes are optimized to achieve maximum
throughput for a particular task, usually prioritizing performance over flexibility. JasperSoft’s
JasperReports is the tool used to producing the range of outputs, including HTML, PDF, Excel
XLS, CSV and XML file formats. It builds dynamic presentations from either static data, or data
retrieved from a database table using an SQL query, Hibernate queries, and is designed to be
integrated directly into Java/J2EE applications.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Document
Archival and
Regeneration

MTS_UC_XXXXX.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 152

5.8 Document Generation

The document generation function will support automated and manual document production,
including the creation, review, distribution, and printing of all system-generated and user-defined
documents. MTS functions will initiate documents as specified by systems rules and condition.
Authorized workers will produce document manually from pre-defined document templates
(selecting from predefined paragraphs, images, signatures, or free-form text) according to case
specifics. Once selected, merged, and composed, the document can be previewed on-line or
placed in a queue for print generation and archive.

Exhibit 5-8 diagrams the use cases which comprise the functionality of Document Generation, as
required by the GSD and SRS documents:

• Document Data Merge.

• Document Mapping.

• Document Print Management.

• Administrative Templates.

• Disbursement Check Printing.

Document
Data Merge

Document
Mapping

Document Print
Management

Document Template
Administration

Disbursement
Check Printing

Document
Data Merge

Document
Mapping

Document Print
Management

Document Template
Administration

Disbursement
Check Printing

Exhibit 5-8: Document Generation Use Cases

Detailed System Design

Version 1.12 06/13/2014 153

MTCSE
Database

Document Management Interface

Template
Management Document Generation Document Archive

Document Assembly

Document Data Mapping

Data Element
Definition

Data Group
Definition

Administrators Users

Document Generation
Engine

Document Retrieval
Engine

Template Management
Engine

Flex2 UI

J2EE

Figure 5.8.2 Document Generation Architecture

Detailed System Design

Version 1.12 06/13/2014 154

5.8.1 MTS Use Case: Document Data Merge

Summary

The use case will provide a detailed description of all the components required to assemble the
dynamic and static data from the predefined template. This component is used during document
generation.

Approach

Data merging component will parse the XML document template and extract all variable data
and perform queries to populate the dynamic portions of the XML. The process continues until
all variable data is replaced by data from the database and a final XML is prepared. This XML
document is processed by the document generation process to generate the final output.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Document
Generation – Data
Merge

MTS_UC_DocGenDataMerge.doc Alfresco System -> MTS ->
Design – Detail Design

5.8.2 MTS Use Case: Document Mapping

Summary

The use case will provide a detailed description of all the components required to support the
data mapping functionality to allow the assignment of data element to document templates.

Approach

Data mapping will be provided by assigning dynamic variables to one or many data elements
within the application. The many data elements will be placed in groups and will be assignable
within the template designer. These variables and data groups will be populated by predefined
SQL queries.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Document
Generation – Data
Mapping

MTS_UC_DocGenDataMapping.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 155

5.8.3 MTS Use Case: Document Print Management

Summary

This use case defines the actual generation of the final document from the XML document once
the user confirms the print button on the preview window.

Approach

The static data merged with the variable data from the merge component is processed by this
component using the iText PDF generation framework. The generated document is created as a
PDF file, while a copy of the same file is persisted into the database for reprinting at a later time.
The print management process will support batch print processing and real-time print processing.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Document
Print Management

MTS_UC_Document Print
Management.doc

Alfresco System -> MTS ->
Design – Detail Design

5.8.4 MTS Use Case: Document Generation – Admin Templates

Summary

The use case will provide a detailed description of how to view, create, edit, and delete document
templates.

Approach

Template designer panels will be used by administrator with sufficient privileges to create a new
document template. For each template that is created, the user will be required to assign a
functional area, unique document id, document name, header details, footer details, and the body
section. The template designer also provides the ability to view, edit, and/or delete document
templates. Each time a document is edited and saved, the system creates a minor version of the
document template. This template becomes the current template for document generation
process.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Document
Generation –
Administrative
Templates

MTS_UC_DocgenAdminTemplate.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 156

5.8.5 MTS Use Case: Disbursement Check Printing

Summary

This use case operates to produce hardcopy checks from disbursement records for delivery to the
payee. It operates as a daily scheduled process and uses a MICR-encoded printing device for
producing the check.

Approach

Checks are produced when the daily scheduled process is invoked to retrieve all qualifying
records from FIN_DISB_CHEK which then creates the disbursement transaction that moves
money from the payee account to the automated disbursement account. The system uses the
disbursement data to populate the items into an imageable MICR-encoded format, print the
check, and update the status of the disbursement check record.

The disbursement check printing module generates documents as defined by the rules-based
logic described within Section 2, Software Design of the Use Case document.

This module creates, reads, and updates data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

The MTS application scheduler invokes the Disbursement Check Printing process at pre-defined
scheduled intervals. The scheduler framework contains an XML configuration file that defines
the schedule policies for the components to be scheduled.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Disbursement
Check Printing

MTS_UC_Disbursement Check
Printing.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 157

5.9 Security and Administration

The security and administration component provides related business functions through the
configuration and security administration module. The configuration modules allow
administrators to customize a tribal installation to perform optional functions for system,
financial and enforcement processing. The security and administration modules perform access
control services and regulate MTS entry points.

Exhibit 5-9 diagrams the use cases which comprise the functionality of Security and
Administration, as required by the GSD and SRS documents:

• Security Administration.

• User Access.

• User Calendar.

• User Tickler & Worklists.

• System Configuration.

• Security Privileges.

Security
Administration

User
Access

User
Calendar

User Ticklers
& Worklists

System
Configuration

Security
Privileges

Security
Administration

User
Access

User
Calendar

User Ticklers
& Worklists

System
Configuration

Security
Privileges

Exhibit 5-9: Security & Administration Use Cases

Detailed System Design

Version 1.12 06/13/2014 158

5.9.1 MTS Use Case: Security Administration

Summary

This use case is comprised of processing that supports MTS administrators workers with security
administration functions and processes.

Approach

Security administration and application security will be divided into separate menu functions.
The functions will isolate security functions related to user maintenance, role/profile
maintenance, and menu navigation maintenance. The goal for security will be to isolate access
to screen navigation with menu restrictions based on role. Then assign read/write attributes for
presentation pages based on the role provided, thus restricting the user to view/update of existing
pages based on the role of the current user. All of the capabilities will be maintained in the
“security administration” panels accessed by MTS administrators.

The security administration module creates, reads, updates, and/or deletes data from MTS tables
as depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced is in the table below.

Track Document Name Location

Use Case: Security
Administration

MTS_UC_Security
Administration.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 159

5.9.2 MTS Use Case: User Access

Summary

This use case describes the functionality associated with MTS user access and management.
System access control will be provided by application access screens that will provide login,
lockout and logoff functionality.

Approach

Access to MTS will be secured by processes that provide user authentication through a
standardized login process, user lockout capabilities through user initiated process, and a
standard logout process initiated by either the user or by a system-initiated logoff process.

This use case defines a user screen and will accept the entry of a user ID and password for an
approved user. Upon recognition and verification of the user ID and password, the system will
open an initial screen based on the user’s role.

A screen will be triggered by a user action selecting the lock screen button. The screen will
display when the user has locked his screen. This screen will show no case or participant data.
It will permit access to the system upon entry of the password of the user who locked the screen.

Inactivity or a logoff requested by the user will trigger a user logoff screen. This screen will
show no case or participant data. The inactivity timer or direct user request will remove all
session information and display the logoff screen.

Impact
Based on the user role security information the system navigation options will be modified to the
appropriate initial screen.

Modifications to the underlying desktop will be required to support a button to lock the user
session. Session information must be stored for an indefinite timeframe when the lock process
has been selected.

System audit triggers must be created to track user access and login/logoff history. Also a
modification to the desktop is required to support a button to execute the user initiated logoff
process. Session information must be purged from the application and user state must be
terminated.

The user access module creates, reads, updates, and/or deletes data from MTS tables as depicted
in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced is in the table below.

Track Document Name Location

Use Case: User Access MTS_UC_UserAccess.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 160

5.9.3 MTS Use Case: User Calendar

Summary

This use case is comprised of processing that supports the system, users, and external agencies
with calendar functionality. It operates as a common process for viewing, tracking, and
changing calendar events related to managing a child support case and its participants.

 Approach

TCSE workers access UI panels to perform the activities of calendaring. The panels allow users
to record calendar events, including multiple caseworkers for a given appointment. The module
will automatically generate ticklers for caseworkers. Ticklers can be generated by other sources
as well; therefore the calendar design will integrate seamlessly with the tickler and worklist
functionalities. The UI design will be flexible and loosely coupled with the backend design in
order to present the calendar information in different formats (such as daily, weekly, and
monthly). The Calendar function will also initiate the generation of necessary documents and
case events in addition to ticklers depending on the calendar event type.

This module generates documents as defined by the rules-based logic described within the Use
Case document.

The user calendar module creates, reads, updates, and/or deletes data from MTS tables as
depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: User
Calendar

MTS_UC_User Calendar.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 161

5.9.4 MTS Use Case: User Tickler & Worklists

Summary

This use case is comprised of processing that supports the system, users, and external agencies
with tickler functionality. It operates as a common process for generating ticklers either
automatically in response to an action on or by the system or manually by a user.

Approach

This module will create ticklers and places them on the user’s worklist when pre-defined data
conditions are met. The tickler contains a set date and a send date. The tickler appears on the
users worklist screen when the send date equals the current date. The system will define
business processes that execute as a scheduled process with an asynchronous dispatch
mechanism to examine current data and create ticklers when pre-determined conditions are met.
Ticklers can be created only on OPEN and SUSPENDED cases.

MTS users have the ability to create ticklers manually and enter the text, Set Date, End Date, and
other supporting data if needed.

The tickler record includes the following details:

• Tickler Code.

• Name and Description.

• Set Date.

• Send Date.

• Created By (System/User).

• Sent to (Caseworker).

• Case Number including Case Status and Function.

• Participants on Case.

• Caseworker ID.

• Business Process Instance ID (Used in cases where some business process is to be
initiated which is in a wait state).

• Trigger Name (Used in cases where a pre-defined business process must be instantiated
based on user action).

• Tickler Status (Open, Delete, Complete).
If a tickler is displayed on a worker’s worklist, the worker deletes the tickler, and the criteria are
not satisfied for the tickler to be physically deleted, the system will automatically recreate the
tickler and place it on the caseworker’s worklist on its next scheduled run.

Ticklers may also be generated and placed in the worker’s worklist by other system business
functions, timeframe requirements, or other worker actions.

The user tickler and worklist module creates, reads, updates, and/or deletes data from MTS
tables as depicted in Section 3, Database of the Use Case Document.

Detailed System Design

Version 1.12 06/13/2014 162

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: User Tickler
and Worklist

MTS_UC_User Tickler and
Worklist.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 163

5.9.5 MTS Use Case: System Configuration

Summary

The system configuration function involves the initial configuration of MTS processing options
and allows user view and update. The initial installation process will consist of an automated
configuration load of application, documents, ticklers, and system-level financial accounts.
System Administrators will access configuration panels through the System Administration
function to maintain the system configuration parameters. System Administrators will use this
function to define initial control parameters for processing, including Application, Documents,
and Tickler configurations.

Related to this function is the automated initialization and loading of system-level accounts that
will be used by financial sub-systems.

Approach

Automated loaded processes will initialize and populate the respective tables allowing
administrators to configure options for processing during initial installation. Certain fields will
also be available to the system administrator during normal production operations. This module
will allow configuration of the following components:

• Tribal Agency Information.

• Tribal Policies.

• Timeframes.

• Enforcement.

• Financials.

• Printers.

• Documents.

• Ticklers.

• System-level financial accounts.
As part of system setup, The CNFG_APPLICATION, CNFG_DOCUMENT, and
CNFG_TICKLER tables will be created and loaded with default values using a SQL file script.
Subsequently defined system configurations will be available in the backups of MYSQL tables.
Tabbed panels will be accessed by the MTS Administrator to manage the Application,
Documents and Ticklers panels are defined in Section 2.4.2.2, Flex MXML.

As part of system setup, System-Level Accounts will be created and loaded with default values
using a SQL file script. This script will be run as part of system installation to populate the
financial system-level account table (FIN_SYSTEM_ACCOUNT) for the respective accounts,
each initialized with a zero balance.

The system configuration function creates, reads, and updates data from MTS tables as depicted
in Section 3, Database of the Use Case Document.

Detailed System Design

Version 1.12 06/13/2014 164

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: System
Configuration

MTS_UC_System
Configuration.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 165

5.9.6 MTS Use Case: Security Privileges

Summary

The system will be configured to define role-based privilege criteria for each role. User interface
panels will employ these criteria to determine if a specific role has “Read” capability or
“Read/Write” capability on a given panel.

Approach

The design uses a relational table to define the role-specific privilege criteria. The MTS
application loads privileges for each role during application startup into the application cache.

The user interface component of the security privileges will allow authorized system
administrators to query the cache to get privilege data for the user during the authentication
process. Privilege data is then used to dynamically enable or disable buttons on panels
depending on whether the user has “Read” or “Read/Write” privilege for the current panel within
a module.

As part of system setup, The CMMN_PRIVILEGE and CMMN_ROLE tables will be created
and loaded with values using a SQL file script. As part of application startup, the Cache
Initializer Servlet is responsible for loading the privilege data for each role into MTS Data Cache
which is implemented using JBoss Cache.

The security privileges function creates, reads, and updates data from MTS tables as depicted in
Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Security
Privledges

MTS_UC_Security
Privledges.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 166

5.10 Common Functions

This section presents common functions that are shared among the various MTS applications.
These applications interact with selected functions, providing common services to complete a
routine business function.

Exhibit 5-10 diagrams the use cases which comprise common functions, as required by the GSD
and SRS documents:

• Common Monitor.

• Address Management.

• Member Match.

• Create Financial Accounts.

• Create Debt Accounts.

Common Monitor

Intake Document
Monitor

Intake Alert
Monitor

Locate Letter
Monitor

Locate Time
Monitor

Paternity Letter
Monitor

Establishment
Letter Monitor

Order Review
Monitor

Order Alert
Monitor

Enforcement Alert
Monitor

Service of Process
Monitor

Case Function
Monitor

Financial Tickler
Monitor

Management Alert
Monitor

Emancipation
Monitor

Case Closure
Monitor

Member Match Create Financial
Accounts

Create Financial
Debt Accounts

Common Monitor

Intake Document
Monitor

Intake Alert
Monitor

Locate Letter
Monitor

Locate Time
Monitor

Paternity Letter
Monitor

Establishment
Letter Monitor

Order Review
Monitor

Order Alert
Monitor

Enforcement Alert
Monitor

Service of Process
Monitor

Case Function
Monitor

Financial Tickler
Monitor

Management Alert
Monitor

Emancipation
Monitor

Case Closure
Monitor

Member Match Create Financial
Accounts

Create Financial
Debt Accounts

Exhibit 5-10: Common Function Use Cases

Detailed System Design

Version 1.12 06/13/2014 167

5.10.1 MTS Use Case: Common Monitor

Summary

The common monitor function supports processing of ticklers, events, and documents for all
cases among the various MTS program functions. This function is comprised of a series of
scheduled background components that execute separately at pre-defined intervals to examine
case, participant, and event data and generate tickler(s), event(s), and/or document(s) as required
by the individual module.

Approach

The common monitor is comprised of a series of scheduled background processes that execute at
pre-defined intervals. The MTS application scheduler invokes each monitoring job to examine
case/participant data and determine whether particular conditions for a tickler, event, and/or
document generation have been met. Business data conditions will spawn generate tickler(s),
event(s), and/or document(s) as defined within each common monitor module listed below.

The common monitor consists of the following modules:

• Intake Document Monitor.

• Intake Alert Monitor.

• Locate Letter Monitor.

• Locate Time Monitor.

• Paternity Letter Monitor.

• Establishment Letter Monitor.

• Order Review Monitor.

• Order Alert Monitor.

• Enforcement Alert Monitor.

• Service of Process Monitor.

• Case Function Monitor.

• Financial Tickler Monitor.

• Management Alert Monitor.

• Emancipation Monitor.

• Case Closure Monitor .
The MTS application scheduler invokes the above functions at pre-defined scheduled intervals.
The scheduler framework contains an XML configuration file that defines the schedule policies
for the components to be scheduled.

Worklist Flex panels will be implemented to process and display all qualifying tickers in the
caseworker’s worklist on the day specified by the send date. The Worklist panels will gather
ticklers from the CMMN_TICKLER table by selecting all records where the Send Date equals
the current date.

Detailed System Design

Version 1.12 06/13/2014 168

The common monitor generates ticklers, documents, and events as defined by the rules-based
logic described within Section 2, Software Design of the Use Case document.

This module creates, reads, and updates data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

5.10.1.1 MTS Use Case: Intake Document Monitor

The intake document monitor is a scheduled background component that executes at pre-defined
intervals. The MTS application scheduler invokes this module to examine data and determine
whether particular conditions for tickler, event, and/or document generation have been met. This
module will analyze each case to perform the following:

• Set and send a Notice of Non-Compliance Tickler if no response has been received to a
Non-Cooperation Warning Letter (#14) within the number of calendar days specified by
the caseworker.

• Generate a Notice of Cooperative Status (#15) document if a Notice of Non-Compliance
Tickler is sent and the system is configured for automatic generation of the document.

5.10.1.2 MTS Use Case: Intake Alert Monitor

The intake alert monitor is a scheduled background component that executes at pre-defined
intervals. The MTS application scheduler invokes this module to examine data and determine
whether particular conditions for a tickler, event, and/or document generation have been met.
This module will analyze each case to perform the following:

• Set and send a Birthday Tickler when a Child Date of Birth equals the current date.

• Set and send an Information Request Tickler when a Tribal Enrollment Verification Form
(#73) is generated.

• If a Child Support Enforcement Transmittal #1 – Tribal (#261) or a Child Support
Enforcement Transmittal #1 (#248) is generated, the system will generate a Foreign
Referral Event.

• If the CP has an open case in a foreign jurisdiction, the system will generate Notice to
Close Foreign Case (#346) document.

• Set and send a Foreign Case Closure Tickler and generate a Foreign Case Notice Event
when a Notice to Close Foreign Case (#346) document is generated.

• Set and send a Family Violence Tickler when the Family Violence Code value is set to
Temporary.

• Set and send a Case Suspended Tickler when the Case Status is set to Suspended.

• Send the following ticklers set by the caseworker when the Send Date equals the current
date:

o Foreign Referral Tickler

Detailed System Design

Version 1.12 06/13/2014 169

o Worker Generated Tickler

5.10.1.3 MTS Use Case: Locate Letter Monitor

The locate letter monitor is a scheduled background component that executes at pre-defined
intervals. The MTS application scheduler invokes this module to examine data and determine
whether particular conditions for tickler, event, and/or document generation have been met. This
module will analyze each case to perform the following:

• If no response has been received to a Locate Letter (Document #8, #9, #272, and #275)
with the number of calendar days specified by the caseworker when setting the tickler,
the system will automatically set and send a Locate Letter Tickler.

• If no response has been received to a Postmaster Letter (#468) with the number of
calendar days specified by the caseworker when setting the tickler, the system will
automatically set and send a Postmaster Letter Tickler.

• If no response has been received to an Employment Verification Letter (#6) with the
number of calendar days specified by the caseworker when setting the tickler, the system
will automatically set and send an Employment Verification Letter Tickler.

5.10.1.4 MTS Use Case: Locate Time Monitor

The locate time monitor is a scheduled background component that executes at pre-defined
intervals. The MTS application scheduler invokes this module to examine data and determine
whether particular conditions for tickler, event, and/or document generation have been met. This
module will analyze each case to perform the following:

• Set and send a No Address Tickler if a case has had no NCP address for the number of
calendar days specified by system configuration.

• Set and send a No Verified Address Tickler if a case has had an unverified NCP address
for the number of calendar days specified by system configuration.

• Set and send a No Verified Employer Tickler if a NCP is employable and has an
employer and the employer has not been verified for the number of calendar days
specified by system configuration.

• Set and send a No Employer Tickler if an NCP is Employable and has had no employer
for the number of calendar days specified by system configuration.

5.10.1.5 MTS Use Case: Paternity Letter Monitor

The paternity letter monitor is a scheduled background component that executes at pre-defined
intervals. The MTS application scheduler invokes this module to examine data and determine
whether particular conditions for tickler, event, and/or document generation have been met. This
module will analyze each case to perform the following:

Detailed System Design

Version 1.12 06/13/2014 170

• If no response has been received to a Paternity Interview Letter – First (#276) within the
number of calendar days specified by the caseworker, the system will automatically set
and send a Paternity Interview One Tickler.

• If no response has been received to a Paternity Interview Letter – Second (#278) within
the number of calendar days specified by the caseworker, the system will automatically
set and send a Paternity Interview Two Tickler.

• If no response has been received to a Voluntary Acknowledgment of Paternity Letter –
First (#287) with the number of calendar days specified by the caseworker, the system
will automatically set and send a VAP Letter One Tickler.

• If no response has been received to a Voluntary Acknowledgment of Paternity Letter –
Second (#513) with the number of calendar days specified by the caseworker, the system
will automatically set and send a VAP Letter Two Tickler.

5.10.1.6 MTS Use Case: Establishment Letter Monitor

The establishment letter monitor is a scheduled background component that executes at pre-
defined intervals. The MTS application scheduler invokes this module to examine data and
determine whether particular conditions for tickler, event, and/or document generation have been
met. This module will analyze each case to perform the following:

• If no response has been received to a Facilitation Letter – First (#298) within the number
of calendar days specified by the caseworker, the system will automatically set and send
a Facilitation One Tickler.

• If no response has been received to a Facilitation Letter – Second (#299) within the
number of calendar days specified by the caseworker, the system will automatically set
and send a Facilitation Two Tickler.

• If no response has been received to a Voluntary Service Acceptance Letter (#300) with
the number of calendar days specified by the caseworker, the system will set and send a
Voluntary Service Acceptance Letter Tickler.

5.10.1.7 MTS Use Case: Order Review Monitor

The order review monitor is a scheduled background component that executes at pre-defined
intervals. The MTS application scheduler invokes this module to examine data and determine
whether particular conditions for tickler, event, and/or document generation have been met. This
module will analyze each case to perform the following:

• If a case has an established order and it has been number of calendar days determined by
the tribe since the last review, the system generates a Letter Advising of Review
Eligibility (#480) and generates a Review Notice Tickler to the caseworker.

• If the system has generated the Letter Advising of Review Eligibility (#480) and it has
been number of days defined by the tribal policy with no response from either party, the
system will reset the date for review eligibility.

Detailed System Design

Version 1.12 06/13/2014 171

5.10.1.8 MTS Use Case: Order Alert Monitor

The Order Alert monitor is a scheduled background component that executes at pre-defined
intervals. The MTS application scheduler invokes this module to examine data and determine
whether particular conditions for tickler, event, and/or document generation have been met. This
module will analyze each case to perform the following:

• Generate an Order Change Tickler when an obligation is due to change.

• Set and send a Review Request Tickler when a Letter Acknowledging Review Request
(#325) document is generated.

• Send a Pending Action Tickler (set by the caseworker) when the Send Date equals the
current date.

• Send a Review Notice Tickler when the Send Date equals the current date.

5.10.1.9 MTS Use Case: Enforcement Alert Monitor

The enforcement alert monitor is a scheduled background component that executes at pre-
defined intervals. The MTS application scheduler invokes this module to examine data and
determine whether particular conditions for tickler, event, and/or document generation have been
met. This module will analyze each case to perform the following:

• Set and send a Voluntary IWO Tickler when a Voluntary Wage Withholding Agreement
(#471) and Notice of Voluntary Wage Withholding (#472) document is generated by the
system.

• Set and send a Remedial Contempt Tickler when a Remedial Contempt Order (#319)
document is generated.

• Set and send an IWO Tickler when an Income Withholding Order – Federal (#505) and
an Income Withholding Letter to Employer (#499) document for the NCP and employer
is generated by the end-user.

• Set and send a Failure to Withhold Notice Tickler when a Notice of Failure to Withhold
(#311) document is generated by the end-user.

• Set and send a License Suspension Tickler when an Order to Show Cause (#318) or an
Order to Suspend Tribal License (#474) has been generated.

• Set and send a Tribal Warning Letter Tickler when a License Suspension NCP Tribal
Warning Letter (#55) document is generated by the end-user.

• Set and send a Seizure Warning Letter Tickler if a Seizure Warning Letter (#320)
document has been generated.

• Set and send a State Notice Tickler if a Child Support Enforcement Transmittal #1 (#248)
document has been generated to request a state to suspend a state license.

Detailed System Design

Version 1.12 06/13/2014 172

5.10.1.10 MTS Use Case: Service of Process Monitor

The service of process monitor is a scheduled background component that executes at pre-
defined intervals. The MTS application scheduler invokes this module to examine data and
determine whether particular conditions for tickler, event, and/or document generation have been
met. This module will analyze each case to perform the following:

• Generate a Bad Address Tickler if SOP was unsuccessful due to a bad address.

• Set and send a Reschedule Hearing Tickler when a Hearing Notice - Cancellation (#523)
document is generated.

5.10.1.11 MTS Use Case: Case Function Monitor

The case function monitor is a scheduled background component that executes at pre-defined
intervals. The MTS application scheduler invokes this module to examine data and determine
whether particular conditions for tickler, event, and/or document generation have been met. This
module will analyze each case to perform the following:

• If a case has “Open” status and has been inactive for the number of calendar days
determined by the tribe, the system will set and send a Case Inactivity Tickler for the
caseworker’s supervisor.

• If a case has “Open” status and the NCP does not have a verified address the system will
set the Case Function to “Locate”.

• If a case has “Open” status the system will set the Case Function to “Locate” if the NCP:

o Has a verified address.

o Is employable, but does not have a verified employer.

• If a case has “Open” status, the system will set the Case Function to “Order
Establishment” if the NCP:

o Has a verified address.

o Is either not employable or has a verified employer.

o There is no valid child support order.

o Paternity is either established or presumed.

• If a case has “Open” status, the system will set the Case Function to “Paternity” if the
NCP:

o Has a verified address.

o Is either not employable or has a verified employer.

o There is no valid child support order.

o Paternity is neither established nor presumed.

• If a case has “Open” status, the system will set the Case Function to “Enforcement” if the
NCP:

Detailed System Design

Version 1.12 06/13/2014 173

o Has a verified address.

o Is either not employable or has a verified employer and there is a valid child support
order and payments are not delinquent.

• If a case has “Open” status, the system will set the Case Function to “Delinquent” if the
NCP:

o Has a verified address.

o Is either not employable or has a verified employer.

o There is a valid child support order and payments are delinquent.

• If the system has changed the Case Function, the system will generate a Case Status
Change Event.

• If the Case Function has transitioned to “Enforcement”, the system will set and send a
Case in Enforcement Tickler.

• If the Case Function has transitioned to “Order Establishment”, the system will set and
send a Case in Order Establishment Tickler.

5.10.1.12 MTS Use Case: Financial Tickler Monitor

The financial tickler monitor is a scheduled background component that executes at pre-defined
intervals. The MTS application scheduler invokes this module to examine data and determine
whether particular conditions for tickler, event, and/or document generation have been met. This
module will analyze each case to perform the following:

• Set and send an In-Kind Payment Received Tickler when an in-kind payment is recorded
during Collection Posting.

• Set and send an NSF Adjustment Tickler when an NSF type adjustment is performed
during Transaction Adjustments.

• Set and send a Check Escheated Tickler when Disbursement Check Status changes from
"Outstanding" to "Escheated".

5.10.1.13 MTS Use Case: Management Alert Monitor

The management alert monitor is a scheduled background component that executes at pre-
defined intervals. The MTS application scheduler invokes this module to examine data and
determine whether particular conditions for tickler, event, and/or document generation have been
met. This module will analyze each case to perform the following:

• Set and send a SOP Initiated Tickler when service of process is initiated.

• Set and send an Appointment Letter Tickler when a Appointment Letter - Intake (#252)
document is generated.

Detailed System Design

Version 1.12 06/13/2014 174

• Set and send a Consolidation Notice Tickler when a Letter Advising of Order to
Consolidate (#476) document or Notice/Motion for Consolidation (#331) document is
generated.

• Set and send a Release of Information Tickler when a Release of Information Form (#71)
document is generated.

• Set and send a Transfer Tickler when a Letter Advising of Transfer of Jurisdiction (#477)
document is generated.

• Set and send a Hearing Scheduled Tickler when a hearing is scheduled.

5.10.1.14 MTS Use Case: Emancipation Monitor

Emancipation monitor is a scheduled background component that executes at pre-defined
intervals. The MTS application scheduler invokes this module to examine data and determine
whether particular conditions for tickler, event, and/or document generation have been met. This
module will analyze each case to perform the following:

• Set and send an Emancipation Pending Tickler, three months before the date of
emancipation of any child on a case.

5.10.1.15 MTS Use Case: Case Closure Monitor

The case closure monitor is a scheduled background component that executes at pre-defined
intervals. The MTS application scheduler invokes this module to examine data and determine
whether particular conditions for tickler, event, and/or document generation have been met. This
module will analyze each case to perform the following:

• Set and send a Case Closure One Tickler if a Case Closure Notice – First (#72) document
is generated.

• If a case has an active Case Closure One Tickler and it has been more than the specified
time for the response set by the tribal policy, the system will generate the Case Closure
Notice – Second (#518) and set and send a Case Closure Two Tickler.

• Set and send a Case Closure Notice Tickler when a Case Closure Request (#103)
document or Case Closure Notice – First (#72) notice is generated.

• Set a Case Kept Open Event when a Case Closure Notice – Denied (#519) document is
generated.

• If the caseworker closes the case, the system will create a Case Closure Notice – Closed
(#520) for both parties, generate a Close Case Event, set and send a Closure Review
Tickler to the case supervisor for review, set and send a Supervisory Review Tickler
when a Case Closure Notice – Closed (#520) document is generated.

• If a response is not received within the timeframe, the system will set and send a Close
Case Tickler to the caseworker to close the specified case.

Detailed System Design

Version 1.12 06/13/2014 175

• If all children on a case have been emancipated, the system will send a Case Closure –
Emancipation Tickler.

• If paternity for the NCP on a case has not been established for one year, the system will
set and send a Case Closure – Paternity Tickler.

• If the location for the CP on a case has been unknown for one year, the system will set
and send a Case Closure – CP Lost Tickler.

• If the location of an NCP on a case has been unknown for three years, the system will set
and send a Case Closure – NCP Lost Tickler.

• If a case is arrears only and arrears are $0, the system will set and send a Case Closure –
Arrears Only Tickler.

• If Good Cause is set for a Case, the system will set and send a Case Closure – Good
Cause Tickler.

• If the child support order for a case has expired, the system will set and send a Case
Closure – Order Expired Tickler.

5.10.2 MTS Use Case: Member Match

Summary

This use case is comprised of processing that supports caseworkers with searching for
participants and his or her related cases using First Name, Last Name, Date of Birth (DOB), Sex,
and/or Social Security number (SSN). It will optionally perform a phonetic search.

Approach

Member match is a generic process that is part of the Common Popup Screen Use Case. It
provides a list of participants based on pre-defined filter criteria. The function can be invoked
from any functional area to search and select a participant and/or view cases for a participant.
Selecting a participant from the list returns the participant object to the caller.

Financial workers access UI panels to perform the activities of member match. The panels allow
caseworkers to enter the participant’s First Name, Last Name, DOB, Sex, and SSN (or any
combination) and click “Search” to search the database to find matching participants. The
worker also has the option to perform a Soundex search by selecting the “Soundex Search”
checkbox on the search panel.

The search function displays list of participants that match the input criteria entered. The
caseworker can select a participant from the list to view participant details by selecting the
“Member Details” button, view cases for the selected participant by selecting the “Member
Cases” button, and/or select the participant object by selecting the “Select Member” button.

The common member match screen can be invoked from any component/module within any
functional area by invoking the display popup command and setting the current state to Member
Search.

This module reads updates data from MTS tables as depicted in Section 3, Database of the Use
Case Document.

Detailed System Design

Version 1.12 06/13/2014 176

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Member
Match

MTS_UC_Member_Match.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 177

5.10.3 MTS Use Case: Create Financial Accounts

Summary

Financial account creation is a common function which is invoked by a calling process to
construct financial accounts for a case and/or participant, as required.

Approach

This module will be invoked from a MTS program function to construct and insert a financial
account record into the FIN_ACCOUNT table. The invoking process will specify parameters
that define the financial account to be created. Once created and inserted into the table, this
process will then create and insert a corresponding event record into the FIN_EVENT table and
return a status message to the caller, with an indicator when an error is encountered.

The financial account creation function will be implemented as a Java Singleton class allowing
other functional areas within the system to create debt accounts. When invoked, the financial
account creation function will produce a unique debt account (debt category & debt type
combination) for a case.

An event record is created in FIN_EVENT for each successful instance of a new debt account
inserted into FIN_ACCOUNT.

The financial account creation module generates documents as defined by the rules-based logic
described within Section 2, Software Design of the Use Case document.

It creates, reads, updates, and/or deletes data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Create
Financial Accounts

MTS_UC_Create Financial
Accounts.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 178

5.10.4 MTS Use Case: Create Debt Accounts

Summary

Debt account creation is a common function which is invoked by a calling process to construct
debt accounts as required.

Approach

This module will be invoked from a MTS program function to construct and insert a debt
account record into the FIN_DEBTACCOUNT table. The invoking process will specify
parameters that define the debt account to be created. Once created and inserted into the table,
this process will then create and insert a corresponding event record into the FIN_EVENT table
and return a status message to the caller, with an indicator when an error is encountered.

The debt account creation function will be implemented as a Java Singleton class allowing other
functional areas within the system to create debt accounts. When invoked, the debt account
creation will produce a unique debt account (debt category & debt type combination) for a case.

An event record is created in FIN_EVENT for each successful instance of a new debt account
inserted into FIN_DEBTACCOUNT.

The debt account creation module generates documents as defined by the rules-based logic
described within Section 2, Software Design of the Use Case document.

It creates, reads, updates, and/or deletes data from MTS tables as depicted in Section 3, Database
of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Create Debt
Accounts

MTS_UC_Create Debt
Accounts.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 179

5.11 Third Party Data Management
This section presents functions related to the maintenance and configuration of third party
information (e.g., employers, insurance companies, agencies, courts, and attorneys). This section
supports the various MTS applications with third party information. Third party configuration
relates to the initial load of third party data to the third party tables during system setup and
configuration. Third party search describes a general search functionality of all third party
entities. The additional third party use cases detail the maintenance of third party data, including
searching against specific third party types, adding records third party records, and updating
existing third party records.

Exhibit 5-11 diagrams the use cases which comprise the functionality of Third Party Data
Management, as required by the GSD and SRS documents:

• Third Party Maintenance & Configuration.

• Third Party Search.

• Third Party Agency.

• Third Party Attorney.

• Third Party Correctional Facility.

• Third Party Court.

• Third Party Employer.

• Third Party Financial Institution.

• Third Party Genetic Testing Lab.

• Third Party Health Care Provider.

• Third Party Health Insurance Provider.

• Third Party Law Enforcement.

• Third Party Probation Parole Officer.

• Third Party Registered Agent.

• Third Party School.

• Third Party Tribal CSE Office.

Detailed System Design

Version 1.12 06/13/2014 180

Third Party
Configuration

Third Party
Search

Third Party
Agency

Third Party
Attorney

Third Party
Correctional Facility

Third Party
Court

Third Party
Employer

Third Party
Financial Institution

Third Party
Genetic Testing Lab

Third Party Health
Care Provider

Third Party Health
Insurance Provider

Third Party
Law Enforcement

Third Party Probation
Parole Officer

Third Party
Registered Agent

Third Party
School

Third Party Tribal
CSE Office

Third Party
Configuration

Third Party
Search

Third Party
Agency

Third Party
Attorney

Third Party
Correctional Facility

Third Party
Court

Third Party
Employer

Third Party
Financial Institution

Third Party
Genetic Testing Lab

Third Party Health
Care Provider

Third Party Health
Insurance Provider

Third Party
Law Enforcement

Third Party Probation
Parole Officer

Third Party
Registered Agent

Third Party
School

Third Party Tribal
CSE Office

Exhibit 5-11: Third Party Maintenance & Configuration Use Cases

Detailed System Design

Version 1.12 06/13/2014 181

5.11.1 MTS Use Case: Third Party Maintenance & Configuration

Summary

This use case involves the initial configuration of third party data and allows user view and
update. The initial installation process will consist of an automated configuration load of third
party information (e.g., employers, insurance companies, agencies, courts, attorneys, among
others).

Approach

Automated loaded processes will initialize and populate the respective tables allowing
administrators to maintain third party tables. As part of system setup, the respective tables will
be created and loaded with default values using a SQL file script.

The third party maintenance & configuration function creates, reads, and, updates data from
MTS tables as depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Maintenance &
Configuration

MTS_UC_ Third Party
Maintenance & Configuration.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 182

5.11.2 MTS Use Case: Third Party Search

Summary

The third party search module allows users to search against all third party tables or select a
specific table to search.

Approach

The third party search function allows users to search all third party tables. This function is
accessed throughout the MTS application to search third party information by using specified
search criteria (such as name and type) and viewing a list of matching third party records through
the UI panels. Authorized users have the ability to select a record from the list and open the
related detail popup for the third party record.

The third party search module displays a search form to allow the worker to enter selected
criteria such as the third party name and optionally the third party type. Name is the only
required entry. Selecting the “Search” Button will return a list of third party entities.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Search

MTS_UC_Third_Party

_Search.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 183

5.11.3 MTS Use Case: Third Party Agency

Summary

This component operates with the third party search module to maintain information related to
third party agencies.

Approach

MTS users can activate the third party agency popup from the third party search module. The
popup allow user to update information on third party agencies.

The third party agency module reads and/or updates data from MTS tables as depicted in Section
3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Agency

MTS_UC_ Third Party
Agency.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 184

5.11.4 MTS Use Case: Third Party Attorney

Summary

This component operates with the Third Party Search module to maintain information related to
third party attorneys.

Approach

MTS users can activate the Third Party Attorney popup from the third party search module. The
popup allow user to update information on third party attorneys.

The Third Party Attorney module reads and/or updates data from MTS tables as depicted in
Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Attorney

MTS_UC_ Third Party
Attorney.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 185

5.11.5 MTS Use Case: Third Party Correctional Facility

Summary

This component operates with the Third Party Search module to maintain information related to
third party correctional facilities.

Approach

MTS users can activate the Third Party Correctional Facility popup from the Third Party Search
module. The popup allow user to update information on third party correctional facilities.

The Third Party Correctional Facility module reads and/or updates data from MTS tables as
depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Correctional Facility

MTS_UC_ Third Party
Correctional Facility.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 186

5.11.6 MTS Use Case: Third Party Court

Summary

This component operates with the Third Party Search module to maintain information related to
third party courts.

Approach

MTS users can activate the Third Party Court popup from the third party search module. The
popup allow user to update information on third party courts.

The third Party Court module reads and/or updates data from MTS tables as depicted in Section
3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Court

MTS_UC_ Third Party Court.doc Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 187

5.11.7 MTS Use Case: Third Party Employer

Summary

This component operates with the Third Party Search module to maintain information related to
third party employers.

Approach

MTS users can activate the Third Party Employer popup from the Third Party Search module.
The popup allow user to update information on third party employers.

The Third Party Employer module reads and/or updates data from MTS tables as depicted in
Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Employer

MTS_UC_ Third Party
Employer.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 188

5.11.8 MTS Use Case: Third Party Financial Institution

Summary

This component operates with the Third Party Search module to maintain information related to
third party financial institutions.

Approach

MTS users can activate the Third Party Financial Institution pop-up from the third party search
module. The popup allow user to update information on third party financial institutions.

The Third Party Financial Institution module reads and/or updates data from MTS tables as
depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Financial Institution

MTS_UC_ Third Party Financial
Institution.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 189

5.11.9 MTS Use Case: Third Party Genetic Testing Lab

Summary

This component operates with the Third Party Search module to maintain information related to
third party genetic testing labs.

Approach

MTS users can activate the Third Party Genetic Testing Lab popup from the third party search
module. The popup allow user to update information on third party genetic testing labs.

The Third Party Genetic Testing Lab module reads and/or updates data from MTS tables as
depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Genetic Testing Lab

MTS_UC_ Third Party Genetic
Testing Lab.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 190

5.11.10 MTS Use Case: Third Party Health Care Provider

Summary

This component operates with The Third Party Search module to maintain information related to
third party health care providers.

Approach

MTS users can activate the Third Party Health Care Provider pop-up from the Third Party Search
module. The popup allow user to update information on third party health care providers.

The Third Party Health Care Provider module reads and/or updates data from MTS tables as
depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Health Care Provider

MTS_UC_ Third Party Health
Care Provider.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 191

5.11.11 MTS Use Case: Third Party Health Insurance Provider

Summary

This component operates with the Third Party Search module to maintain information related to
third party insurance providers.

Approach

MTS users can activate the Third Party Health Insurance Provider popup from the Third Party
Search module. The popup allow user to update information on third party health insurance
providers.

The Third Party Health Insurance Provider module reads and/or updates data from MTS tables as
depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Health Insurance
Provider

MTS_UC_ Third Party Health
Insurance Provider.doc

Alfresco System -> MTS ->
Design – Detail Design

5.11.12 MTS Use Case: Third Party Law Enforcement

Summary

This component operates with the Third Party Search module to maintain information related to
third party law enforcement.

Approach

MTS users can activate the Third Party Law Enforcement popup from the Third Party Search
module. The popup allow user to update information on third party law enforcement.

The Third Party Law Enforcement module reads and/or updates data from MTS tables as
depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Law Enforcement

MTS_UC_ Third Party Law
Enforcement.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 192

5.11.13 MTS Use Case: Third Party Probation Parole Officer

Summary

This component operates with the Third Party Search module to maintain information related to
third party probation parole officers.

Approach

MTS users can activate the Third Party Probation Parole Officer popup from the Third Party
Search module. The popup allow user to update information on third party probation parole
officers.

The Third Party Probation Parole Officer module reads and/or updates data from MTS tables as
depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Probation Parole Officer

MTS_UC_ Third Party _
Probation Parole Officer.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 193

5.11.14 MTS Use Case: Third Party Registered Agent

Summary

This component operates with the Third Party Search module to maintain information related to
third party registered agents.

Approach

MTS users can activate the Third Party Registered Agent popup from the Third Party Search
module. The popup allow user to update information on third party registered agents.

The Third Party Registered Agent module reads and/or updates data from MTS tables as
depicted in Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Registered Agent

MTS_UC_ Third Party
Registered Agent.doc

Alfresco System -> MTS ->
Design – Detail Design

5.11.15 MTS Use Case: Third Party School

Summary

This component operates with the Third Party Search module to maintain information related to
third party schools.

Approach

MTS users can activate the Third Party School popup from the third party search module. The
popup allow user to update information on third party schools.

The Third Party School module reads and/or updates data from MTS tables as depicted in
Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
School

MTS_UC_ Third Party
School.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 194

5.11.16 MTS Use Case: Third Party TCSE Office

Summary

This component operates with the Third Party Search module to maintain information related to
third party TCSE offices.

Approach

MTS users can activate the Third Party TCSE Office popup from the third party search module.
The popup allow user to update information on third party TCSE offices.

The Third Party TCSE Office module reads and/or updates data from MTS tables as depicted in
Section 3, Database of the Use Case Document.

Conclusion:
The document is referenced in the table below.

Track Document Name Location

Use Case: Third Party
Tribal CSE Office

MTS_UC_ Third Party Tribal
CSE Office.doc

Alfresco System -> MTS ->
Design – Detail Design

Detailed System Design

Version 1.12 06/13/2014 195

6 Data Design
This section describes the design components of the MTS Data Model. It is the basis for the
detailed design and coding of the data definition language and the data manipulation language to
be written for the supporting database management system (DBMS). The data dictionary and
logical/ physical database design reflected in this section are system generated and reflect the
data model as of the documents generation date. The database design described below reflects
the database requirements specified in the Software Requirements Specification (SRS).

6.1 Database Standards

The database standards document provides a base set of rules that can be used as a foundation to
create the physical data model. All standards defined in the documentation will be applied to the
MTS MySQL database to during design and development.

The document is referenced in the table below.

Track Document Name Location

Database: Database
Standardization

MTS_Database_Standards.doc Alfresco System -> MTS ->
Database

6.2 Database Design Based on Business Functions

See the MTS Data Model

6.3 Database Table Layouts and Relationships

See the MTS Data Model

Detailed System Design

Version 1.12 06/13/2014 196

7 System Performance

This section highlights the system performance specifications for the MTS, as defined by Section
3 of the General System Design document. It presents three architectures and the general
specifications for system performance. The first architecture is intended to support a single
office program with a thousand cases or less. The second architecture is intended to support a
single or multi-office program with up to 20,000 cases. The third architecture is intended to
support multiple programs using multiple instances of the MTS software and multiple instances
of the same database on shared hardware. This architecture is expected to support programs
totaling up to 20,000 cases.

MTS system performance will be determined by the limitations of the hardware. Hardware
limitation will be alleviated by developing a system that takes advantage of load balancing
technologies to create a highly scalable system. Scalability can be achieved through the use of:
load balance-capable operating systems (OS), clustered web servers, clustered database servers,
and clustered application servers. Load balancing will enable the system to use multiple servers
and pool the resources together. This allows hardware to be added as needed to improve the
overall performance of the system.

System availability will be improved through clustering and load balancing technologies.
Clustering will prevent hardware failures from affecting system performance and uptime. A
failed server will be automatically removed from the cluster and processing will take place on
the remaining servers in the cluster.

Section 3.2, System Architecture outlines the system solution architecture using the following
three (3) cluster models:

• Vertical Cluster (single server).

• Vertical Cluster (multiple server).

• Horizontal Cluster.

A Vertical Cluster has multiple application server instances hosted on the same physical machine
(node).

A Horizontal cluster has multiple physical machines (nodes).

The System Architecture document Section 9, Size and Performance, describes how standard
MTS installation will cluster physical machines to improve system performance (minimize
downtime, improve response time, and maximize scalability).

The Application Cache Use Case document describes how the JBossCache framework will be
implemented as a load balancer to maximize response time, among other cache capabilities.

7.1 Operating System Clustering

The underlying OS for the system will be capable of clustering or load balancing to ensure high
availability and optimum system performance.

Detailed System Design

Version 1.12 06/13/2014 197

7.2 Application Server Clustering

The application server will allow multiple instantiations to be created. This will enable the
system to share the application processing across multiple hardware resources increasing system
performance and availability.

7.3 Database Server Clustering
The database server will provide clustering across multiple servers. Database clustering allows
databases installed across multiple databases servers to appear as a single instance. Unavailable
servers will not affect the clusters ability to function.

Detailed System Design

Version 1.12 06/13/2014 198

8 Appendices

Appendix A – Acronyms
Acronym Definition

OS Operating System

BOM Bill of Materials

VO Value Object

SRS Software Requirements Specification

GSD General System Design

J2EE Java 2 Enterprise Edition

UAT User Acceptance Test

UI User Interface

RIA Rich Internet Application

MVC Model View Controller

MXML Multimedia eXtensible Markup Language

CSS Cascading Style Sheets

Detailed System Design

Version 1.12 06/13/2014 199

Appendix B – References
System Requirements Specification, Volume 1 – Business Requirements, Version 1.5,
02/28/2007

System Requirements Specification, Volume 2 – Appendices, Version 1.1, 02/27/2007

General System Design, Volume 1 – Software Architecture, Version 1.1, 02/28/2007

MTS Data Dictionary and Data Model

Detailed System Design

Version 1.12 06/13/2014 200

Appendix C – IT Bill of Materials (BOM)
Infrastructure Products

Quantity Architecture Component Manufacture/Vendor Product Name Version

1 Application Server software JBoss JBoss 4.05

1 Application Server/HTTP
Server Hardware

TBD TBD

1 HTTP Server Software Apache Apache

1 Database Software MySQL MySQL 5

1 Database Server Hardware
(MySQL)

TBD TBD

1 Version Control SubVersion SubVersion

1 Version Control Hardware TBD TBD

 Development Software

1 Reporting Software Jasper Reports Jasper Reports

1 Reporting Software iReport iReport

1 Business Process Modeling JBoss jBPM

1 Cache JBoss Cache

1 Developer Platform Eclipse Eclipse WTP

1 Developer Platform Extension
for JBoss

JBoss JBoss IDE

1 Subclipse SubVersion Subclipse

1 Flex2 SDK Adobe Flex2

1 JDK 1.5 Sun Java

1 Security Software ACEGI ACEGI Security

Detailed System Design

Version 1.12 06/13/2014 201

Other Services
Quantity Architecture Component Manufacture/Vendor Product Name Version

1 Global Web Hosting

1 Data Center

1 WAN

1 LDAP Services

1 VPN

	1 Document Overview
	2 Scope of Document
	2.1 Audience
	2.2 Related Documentation
	2.3 Definitions and Acronyms
	2.4 Document Conventions

	3 System Design
	3.1 Description
	3.2 System Architecture
	3.2.1 Deployment Architecture View

	4 Software Design
	4.1 Design View
	4.1.1 Client-Side Data Representation

	4.2 Design Model
	4.2.1 Service to Worker

	4.3 Controller
	4.3.1 Managing Commands with a Controller

	4.4 J2EE Application Tier
	4.5 J2EE Design and Development
	4.5.1 Relational Persistence
	4.5.2 Package Structure (Java Classes)
	4.5.3 Web Service Generation

	4.6 Java Conventions and Standards
	4.6.1 Naming Conventions
	4.6.1.1.1 General Naming Conventions
	4.6.1.2 Specific Naming Conventions

	4.6.2 Java Source Files
	4.6.3 Program Statements
	4.6.3.1 Package and Import Statements
	4.6.3.2 Classes and Interfaces
	4.6.3.3 Methods
	4.6.3.4 Types
	4.6.3.5 Variables
	4.6.3.6 Loops
	4.6.3.7 Conditionals
	4.6.3.8 Miscellaneous

	4.6.4 Layout and Comments
	4.6.4.1 Layout
	4.6.4.1.1 White Space
	4.6.4.1.2 Comments

	4.7 Exception Handling
	4.7.1 Error Messages
	4.7.2 Exception Handling & Logging Standards

	COTS Packages
	4.9 Components
	4.9.1 Component ID and Component Name

	 Interfaces

	5 Detailed Design
	5.1 Case Management
	5.1.1 MTS Use Case: Case Consolidation
	5.1.2 MTS Use Case: Case Information Request
	5.1.3 MTS Use Case: Case Intake
	5.1.4 MTS Use Case: Case Management
	5.1.5 MTS Use Case: Case Quick Locate
	5.1.6 MTS Use Case: Case Referral Process
	5.1.7 MTS Use Case: Participant Demographics
	5.1.8 MTS Use Case: Participant Income and Assets
	5.1.9 MTS Use Case: Participant Address

	5.2 Locate Management
	5.2.1 MTS Use Case: Locate

	5.3 Paternity
	5.3.1 MTS Use Case: Paternity Data Entry
	5.3.2 MTS Use Case: Paternity Documents
	5.3.3 MTS Use Case: Paternity Facilitation
	5.3.4 MTS Use Case: Paternity Genetic Testing
	5.3.5 MTS Use Case: Paternity Stipulation

	5.4 Order Establishment
	5.4.1 MTS Use Case: Order Data Entry
	5.4.2 MTS Use Case: Order Facilitation
	5.4.3 MTS Use Case: Order Stipulation
	5.4.4 MTS Use Case: Order Documents
	5.4.5 MTS Use Case: Order Monitor

	5.5 Enforcement
	5.5.1 MTS Use Case: Enforcement
	5.5.2 MTS Use Case: Enforcement Monitor

	5.6 Financial Management
	5.6.1 MTS Use Case: Financial Payment Posting
	5.6.2 MTS Use Case: Account Charging
	5.6.3 MTS Use Case: Financial Delinquency Monitor
	5.6.4 MTS Use Case: Monthly NCP Billing Notices
	5.6.5 MTS Use Case: Financial Account
	5.6.6 MTS Use Case: Financial Account Summary
	5.6.7 MTS Use Case: Collection Posting
	5.6.8 MTS Use Case: Deposit Processing
	5.6.9 MTS Use Case: Financial Pass-through
	5.6.10 MTS Use Case: Financial Distribution
	5.6.11 MTS Use Case: Financial Disbursements
	5.6.12 MTS Use Case: Bank File Extraction & Reconciliation Matching
	5.6.13 MTS Use Case: Bank Reconciliation Statement
	5.6.14 MTS Use Case: Monthly Check Escheatment
	5.6.15 MTS Use Case: Transaction Adjustments
	5.6.16 MTS Use Case: Monthly Account History
	5.6.17 MTS Use Case: Quarterly Payment History Notices

	5.7 Application Management
	5.7.1 MTS Use Case: Application jBPM Framework
	5.7.2 MTS Use Case: Application Cache
	5.7.3 MTS Use Case: Application Data Validation
	5.7.4 MTS Use Case: Application Exception Processing
	5.7.5 MTS Use Case: Application Scheduled Process
	5.7.6 MTS Use Case: UI Validators
	5.7.7 MTS Use Case: Reporting

	5.8 Document Generation
	5.8.1 MTS Use Case: Document Data Merge
	5.8.2 MTS Use Case: Document Mapping
	5.8.3 MTS Use Case: Document Print Management
	5.8.4 MTS Use Case: Document Generation – Admin Templates
	5.8.5 MTS Use Case: Disbursement Check Printing

	5.9 Security and Administration
	5.9.1 MTS Use Case: Security Administration
	5.9.2 MTS Use Case: User Access
	5.9.3 MTS Use Case: User Calendar
	5.9.4 MTS Use Case: User Tickler & Worklists
	5.9.5 MTS Use Case: System Configuration
	5.9.6 MTS Use Case: Security Privileges

	5.10 Common Functions
	5.10.1 MTS Use Case: Common Monitor
	5.10.1.1 MTS Use Case: Intake Document Monitor
	5.10.1.2 MTS Use Case: Intake Alert Monitor
	5.10.1.3 MTS Use Case: Locate Letter Monitor
	5.10.1.4 MTS Use Case: Locate Time Monitor
	5.10.1.5 MTS Use Case: Paternity Letter Monitor
	5.10.1.6 MTS Use Case: Establishment Letter Monitor
	5.10.1.7 MTS Use Case: Order Review Monitor
	5.10.1.8 MTS Use Case: Order Alert Monitor
	5.10.1.9 MTS Use Case: Enforcement Alert Monitor
	5.10.1.10 MTS Use Case: Service of Process Monitor
	5.10.1.11 MTS Use Case: Case Function Monitor
	5.10.1.12 MTS Use Case: Financial Tickler Monitor
	5.10.1.13 MTS Use Case: Management Alert Monitor
	5.10.1.14 MTS Use Case: Emancipation Monitor
	5.10.1.15 MTS Use Case: Case Closure Monitor

	5.10.2 MTS Use Case: Member Match
	5.10.3 MTS Use Case: Create Financial Accounts
	5.10.4 MTS Use Case: Create Debt Accounts

	5.11 Third Party Data Management
	5.11.1 MTS Use Case: Third Party Maintenance & Configuration
	5.11.2 MTS Use Case: Third Party Search
	5.11.3 MTS Use Case: Third Party Agency
	5.11.4 MTS Use Case: Third Party Attorney
	5.11.5 MTS Use Case: Third Party Correctional Facility
	5.11.6 MTS Use Case: Third Party Court
	5.11.7 MTS Use Case: Third Party Employer
	5.11.8 MTS Use Case: Third Party Financial Institution
	5.11.9 MTS Use Case: Third Party Genetic Testing Lab
	5.11.10 MTS Use Case: Third Party Health Care Provider
	5.11.11 MTS Use Case: Third Party Health Insurance Provider
	5.11.12 MTS Use Case: Third Party Law Enforcement
	5.11.13 MTS Use Case: Third Party Probation Parole Officer
	5.11.14 MTS Use Case: Third Party Registered Agent
	5.11.15 MTS Use Case: Third Party School
	5.11.16 MTS Use Case: Third Party TCSE Office

	6 Data Design
	6.1 Database Standards
	6.2 Database Design Based on Business Functions
	Database Table Layouts and Relationships

	7 System Performance
	7.1 Operating System Clustering
	7.2 Application Server Clustering
	7.3 Database Server Clustering

	8 Appendices
	Appendix A – Acronyms
	Appendix B – References
	Appendix C – IT Bill of Materials (BOM)

