

System Architecture
 Version 1.12
June 06, 2014

Department of Health and Human Services
Administration for Children and Families

Office of Child Support Enforcement

System Architecture

Version 1.12 06/06/2014 2

REVISION HISTORY

Version Date Description of Change Approval

0.1 12/05/2006 Initial Document Outline Chris Meike

1.0 12/13/2006 Document Updates Chris Meike

1.1 12/14/2006 Document Updates Rama Kodumagulla

1.2 12/15/2006 Document Updates Chris Meike

1.3 12/18/2006 Document Updates Chris Meike

1.4 03/28/2007 Format and fonts based on the
documentation standards

Duke T.

1.5 03/26/2008 Format and fonts based on the
documentation standards

TM

1.6 05/08/2008 Updated application
components and diagrams

Chris Meike

1.7 05/08/2008 Version number and format
changes

TM

1.8 12/09/2013 Format Changes TM

1.9-1.12 03/11/2014 Format Changes CP

System Architecture

Version 1.12 06/06/2014 3

MODEL TRIBAL SYSTEM OPEN SOURCE AGREEMENT VERSION 1.0
THIS OPEN SOURCE AGREEMENT ("AGREEMENT") DEFINES THE RIGHTS OF
USE, REPRODUCTION, DISTRIBUTION, MODIFICATION AND
REDISTRIBUTION OF CERTAIN COMPUTER SOFTWARE ORIGINALLY
RELEASED BY THE UNITED STATES GOVERNMENT AS REPRESENTED BY
THE GOVERNMENT AGENCY LISTED BELOW ("GOVERNMENT AGENCY").
THE UNITED STATES GOVERNMENT, AS REPRESENTED BY GOVERNMENT
AGENCY, IS AN INTENDED THIRD-PARTY BENEFICIARY OF ALL
SUBSEQUENT DISTRIBUTIONS OR REDISTRIBUTIONS OF THE SUBJECT
SOFTWARE. ANYONE WHO USES, REPRODUCES, DISTRIBUTES, MODIFIES
OR REDISTRIBUTES THE SUBJECT SOFTWARE, AS DEFINED HEREIN, OR
ANY PART THEREOF, IS, BY THAT ACTION, ACCEPTING IN FULL THE
RESPONSIBILITIES AND OBLIGATIONS CONTAINED IN THIS AGREEMENT.

Government Agency: Administration for Children and Families, Office of Child Support
Enforcement

Government Agency Original Software Designation: Automated Tribal Child Support
Enforcement System

Government Agency Original Software Title: Model Tribal System (MTS)

Government Agency Point of Contact for Original Software:

Director, Division of State and Tribal Systems, OCSE, 370 L’Enfant Promenade, SW.,
Washington, DC 20447. Phone: (202) 690-1234

1. DEFINITIONS

1. "Contributor" means Government Agency, as the developer of the Original Software,
and any entity that makes a Modification.

2. "Display" means the showing of a copy of the Subject Software, either directly or by
means of an image, or any other device.

3. "Distribution" means conveyance or transfer of the Subject Software, regardless of
means, to another.

4. "Larger Work" means computer software that combines Subject Software, or portions
thereof, with software separate from the Subject Software that is not governed by the
terms of this Agreement.

5. "Modification" means any alteration of, including addition to or deletion from, the
substance or structure of either the Original Software or Subject Software, and
includes derivative works, as that term is defined in the Copyright Statute, 17 USC
101. However, the act of including Subject Software as part of a Larger Work does
not in and of itself constitute a Modification.

6. "Original Software" means the computer software first released under this Agreement
by Government Agency with Government Agency designation Automated Tribal
Child Support Enforcement System and entitled Model Tribal System (MTS),
including source code, object code and accompanying documentation, if any.

7. "Recipient" means anyone who acquires the Subject Software under this Agreement,
including all Contributors.

System Architecture

Version 1.12 06/06/2014 4

8. "Redistribution" means Distribution of the Subject Software after a Modification has
been made.

9. "Reproduction" means the making of a counterpart, image, or copy of the Subject
Software.

10. "Sale" means the exchange of the Subject Software for money or equivalent value.
11. "Subject Software" means the Original Software, Modifications, or any respective

parts thereof.
12. "Use" means the application or employment of the Subject Software for any purpose.

2. GRANT OF RIGHTS

A. Subject to the terms and conditions of this Agreement, each Contributor, with respect
to its own contribution to the Subject Software, hereby grants to each prior and
subsequent Recipient a royalty-free, world-wide, non-exclusive, and irrevocable license
to engage in the following activities pertaining to the Subject Software:

1. Use

2. Distribution

3. Reproduction

4. Modification

5. Redistribution

6. Display

B. The rights granted under Paragraph A also apply to the combination of a Contributor's
Modification and the Subject Software. These rights granted in Paragraph B allow the
Recipient to sublicense those same rights. Such sublicense must be under the same terms
and conditions of this Agreement.

C. The Government Agency, in accordance with federal regulations at Code of Federal
Regulations 45 Part 95.617 reserves a royalty-free, world-wide, non-exclusive, and
irrevocable license to reproduce, publish, or otherwise use and to authorize others to use
for federal government purposes, such Original Software and Subject Software, including
source code, object code and accompanying documentation, if any.

3. OBLIGATIONS OF RECIPIENT

A. Distribution or Redistribution of the Subject Software must be made under this
Agreement except for additions covered under paragraph 3H.

1. Whenever a Recipient distributes or redistributes the Subject Software, a copy
of this Agreement must be included with each copy of the Subject Software.

2. If Recipient distributes or redistributes the Subject Software in any form other
than source code, Recipient must also make the source code freely available, and
must provide with each copy of the Subject Software information on how to
obtain the source code in a reasonable manner on or through a medium
customarily used for software exchange.

System Architecture

Version 1.12 06/06/2014 5

B. Each Recipient must ensure that the following copyright notice appears prominently in
the Subject Software: Copyright 2009. United States Government as represented by the
Administration for Children and Families, Office of Child Support Enforcement. All
Rights Reserved.

C. Each Contributor must characterize its alteration of the Subject Software as a
Modification and must identify itself as the originator of its Modification in a manner that
reasonably allows subsequent Recipients to identify the originator of the Modification.
In fulfillment of these requirements, Contributor must include a file (e.g., a change log
file) that describes the alterations made and the date of the alterations, identifies
Contributor as originator of the alterations, and consents to characterization of the
alterations as a Modification, for example, by including a statement that the Modification
is derived, directly or indirectly, from Original Software provided by Government
Agency. Once consent is granted, it may not thereafter be revoked.

D. A Contributor may not add its own copyright notice to the Subject Software.

E. A Recipient may not make any representation in the Subject Software or in any
promotional, advertising, or other material that may be construed as an endorsement by
Government Agency or by any prior Recipient of any product or service provided by
Recipient, or that may seek to obtain commercial advantage by the fact of Government
Agency's or a prior Recipient's participation in this Agreement.

F. In an effort to track usage and maintain accurate records of the Subject Software, each
Recipient, upon receipt of the Subject Software, is requested to provide Government
Agency, by e-mail to the Government Agency Point of Contact listed in clause 5.F., the
following information: Recipient's name, full mailing address, daytime phone number,
and brief (200 words or less) explanation of the Recipient’s intended use of Subject
Software. Recipient's name and personal information shall be used for statistical
purposes only. Once a Recipient makes a Modification available, it is requested that the
Recipient inform Government Agency, by e-mail to the Government Agency Point of
Contact listed in clause 5.F., how to access the Modification.

G. Each Contributor represents that that its Modification is believed to be Contributor's
original creation and does not violate any existing agreements, regulations, statutes, or
rules, and further that Contributor has sufficient rights to grant the rights conveyed by
this Agreement.

H. A Recipient may choose to offer, and to charge a fee for, warranty, support, indemnity
and/or liability obligations to one or more other Recipients of the Subject Software. A
Recipient may do so, however, only on its own behalf and not on behalf of Government
Agency or any other Recipient. Such a Recipient must make it absolutely clear that any
such warranty, support, indemnity, and/or liability obligation is offered by that Recipient
alone. Further, such Recipient agrees to indemnify Government Agency and every other
Recipient for any liability incurred by them as a result of warranty, support, indemnity
and/or liability offered by such Recipient.

I. A Recipient may create a Larger Work by combining Subject Software with separate
software not governed by the terms of this agreement and distribute the Larger Work as a

System Architecture

Version 1.12 06/06/2014 6

single product. In such case, the Recipient must make sure Subject Software, or portions
thereof, included in the Larger Work is subject to this Agreement.

J. Notwithstanding any provisions contained herein, Recipient is hereby put on notice that
export of any goods or technical data from the United States may require some form of
export license from the U.S. Government. Failure to obtain necessary export licenses
may result in criminal liability under U.S. laws. Government Agency neither represents
that a license shall not be required nor that, if required, it shall be issued. Nothing
granted herein provides any such export license.

4. DISCLAIMER OF WARRANTIES AND LIABILITIES; WAIVER AND
INDEMNIFICATION

A. No Warranty: THE SUBJECT SOFTWARE IS PROVIDED "AS IS" WITHOUT
ANY WARRANTY OF ANY KIND, EITHER EXPRESSED, IMPLIED, OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY THAT
THE SUBJECT SOFTWARE WILL CONFORM TO SPECIFICATIONS, ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR FREEDOM FROM INFRINGEMENT, ANY
WARRANTY THAT THE SUBJECT SOFTWARE WILL BE ERROR FREE, OR ANY
WARRANTY THAT DOCUMENTATION, IF PROVIDED, WILL CONFORM TO
THE SUBJECT SOFTWARE. THIS AGREEMENT DOES NOT, IN ANY MANNER,
CONSTITUTE AN ENDORSEMENT BY GOVERNMENT AGENCY OR ANY
PRIOR RECIPIENT OF ANY RESULTS, RESULTING DESIGNS, HARDWARE,
SOFTWARE PRODUCTS OR ANY OTHER APPLICATIONS RESULTING FROM
USE OF THE SUBJECT SOFTWARE. FURTHER, GOVERNMENT AGENCY
DISCLAIMS ALL WARRANTIES AND LIABILITIES REGARDING THIRD-PARTY
SOFTWARE, IF PRESENT IN THE ORIGINAL SOFTWARE, AND DISTRIBUTES
IT "AS IS."

B. Waiver and Indemnity: RECIPIENT AGREES TO WAIVE ANY AND ALL
CLAIMS AGAINST THE UNITED STATES GOVERNMENT, ITS CONTRACTORS
AND SUBCONTRACTORS, AS WELL AS ANY PRIOR RECIPIENT. IF
RECIPIENT'S USE OF THE SUBJECT SOFTWARE RESULTS IN ANY
LIABILITIES, DEMANDS, DAMAGES, EXPENSES, OR LOSSES ARISING FROM
SUCH USE, INCLUDING ANY DAMAGES FROM PRODUCTS BASED ON, OR
RESULTING FROM, RECIPIENT'S USE OF THE SUBJECT SOFTWARE,
RECIPIENT SHALL INDEMNIFY AND HOLD HARMLESS THE UNITED STATES
GOVERNMENT, ITS CONTRACTORS AND SUBCONTRACTORS, AS WELL AS
ANY PRIOR RECIPIENT, TO THE EXTENT PERMITTED BY LAW. RECIPIENT'S
SOLE REMEDY FOR ANY SUCH MATTER SHALL BE THE IMMEDIATE,
UNILATERAL TERMINATION OF THIS AGREEMENT.

5. GENERAL TERMS

A. Termination: This Agreement and the rights granted hereunder will terminate
automatically if a Recipient fails to comply with these terms and conditions, and fails to

System Architecture

Version 1.12 06/06/2014 7

cure such noncompliance within thirty (30) days of becoming aware of such
noncompliance. Upon termination, a Recipient agrees to immediately cease use and
distribution of the Subject Software. All sublicenses to the Subject Software properly
granted by the breaching Recipient shall survive any such termination of this Agreement.

B. Severability: If any provision of this Agreement is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of the remainder of the
terms of this Agreement.

C. Applicable Law: This Agreement shall be subject to United States Federal law only
for all purposes, including, but not limited to, determining the validity of this Agreement,
the meaning of its provisions and the rights, obligations and remedies of the parties.

D. Entire Understanding: This Agreement constitutes the entire understanding and
agreement of the parties relating to release of the Subject Software and may not be
superseded, modified, or amended except by further written agreement duly executed by
the parties.

E. Binding Authority: By accepting and using the Subject Software under this
Agreement, a Recipient affirms its authority to bind the Recipient to all terms and
conditions of this Agreement and that that Recipient hereby agrees to all terms and
conditions herein.

F. Point of Contact: Any Recipient contact with Government Agency is to be directed to
the designated representative as follows: Director, Division of State and Tribal Systems,
OCSE, 370 L’Enfant Promenade, SW., Washington, DC 20447. Phone: (202) 690-1234.

System Architecture

Version 1.12 06/06/2014 8

Table of Contents

1. Introduction ... 10
1.1 Purpose .. 10
1.2 Scope ... 10
1.2.1 Included Topics ... 10
1.3 Acronyms and Definitions .. 10
1.4 References ... 10
1.5 Notations ... 11
1.6 Overview ... 11

2. Architectural Representation .. 12
2.1 Overview ... 12
2.2 IT Application Components .. 14
2.3 Architectural Goals ... 16
2.4 Architectural Requirements and Vision .. 17
2.5 Solution Architecture .. 20
2.6 Roles and Responsibilities .. 21
2.7 Roll-back Strategy .. 22

3. Use Case View ... 23
3.1 Overview ... 23
3.2 Use Cases .. 23

4. Logical View .. 24
4.1 Overview ... 24
4.2 Layered Overview ... 26
4.2.1 Presentation Tier ... 26
4.2.2 Middle/Application Tier ... 30
4.2.3 Persistence Tier ... 32
4.2.4 Data Tier ... 33

5. Process View .. 34

6. Deployment View .. 35
6.1 Overview ... 35
6.2 Deployment View ... 36

7. Implementation View.. 41
7.1 Overview ... 41
7.2 Architecturally Significant Design Packages or COTS Module 42

8. Data View ... 44
8.1 Overview ... 44
8.2 Entity Relationship Diagram ... 45

9. Size and Performance ... 46

10. Quality .. 47

11. Model System Architectural Design and Prototype .. 49

System Architecture

Version 1.12 06/06/2014 9

11.1 Overview ... 49
11.2 Prototype ... 49

12. Appendix A – Acronyms and Definitions ... 50
12.1 Acronyms .. 50
12.2 Definitions... 50

13. Appendix B – References.. 52

14. Appendix C – Notations.. 53

System Architecture

Version 1.12 06/06/2014 10

1. Introduction

1.1 Purpose

This document provides a comprehensive system architectural overview of the Model
Tribal System (MTS) using a number of different architectural views to depict different
aspects of the system. It is intended to capture and convey the significant architectural
decisions that have been made on the system.

1.2 Scope

The architecture detail presented in this document is based on a full functioning system
that provides the child support services. This document describes the architectural
representation of the pilot system including network architecture, logical, and physical
system architecture, use cases to define the functional aspects, data relationships, and
deployment view.

The MTS consists of a common web or XML interface for caseworkers. Using the web
presentation, the Child Support Enforcement (CSE) users will be able to conduct their
day-to-day child support activities for the tribes.

1.2.1 Included Topics
This document includes logical, technical, and systems views of the MTS System. An
overview of the network architecture will be provided to reinforce the overall application
design. This document also includes the MTS data model for all the subject areas. It will
include workflow, component, deployment, package, and workflow views as these
artifacts are created. The logical and physical models for the application are included in
the data section of this document.

1.2.2 Excluded Topics

The application and user requirements are defined in the MTS System requirements
documentation (See document repository for requirements documentation).

1.3 Acronyms and Definitions

See Appendix A.

1.4 References

See Appendix B.

System Architecture

Version 1.12 06/06/2014 11

1.5 Notations

See Appendix C.

1.6 Overview

The system will provide for the efficient management of tribal child support enforcement
cases. For tribes that use this system, it will be the primary automated system used by the
tribe for child support enforcement. Each instance of the system software is intended to
support only one tribal organization. The system contains all data needed to manage a
case, including records of payments and collections made by tribal financial
organizations. It accepts applications for child support services and sets up child support
cases. It can locate participants in the case. It supports the establishment of paternity and
the establishment of support orders. It supports the enforcement of child support orders.
It supports the collection of payments and shall support the distribution and disbursement
of payments. The system also supports the production of all required federal and tribal
reports. The system ensures the privacy of all data.
Key benefits of this project include:

• Available 24 hours a day, 7 days a week except for scheduled maintenance

• Enhanced security including data encryption, authentication, and authorization

• Design built by consensus

• Application horizontal and vertical scalability

• Completely built based on open standards

System Architecture

Version 1.12 06/06/2014 12

2. Architectural Representation

2.1 Overview

This section provides an architectural overview of the MTS System. This document uses
the typical 4+1 views from the Rational Unified Process (RUP) to describe the
architecture.

Figure 1 - 4+1 Views of Software Architecture
The 4+1 view model is a tool primarily used by software architects to view and document
application software. It provides an excellent method for software team members to learn
and understand an application’s architecture.

• Logical View: The logical view primarily supports the functional requirements -
the services the system has been defined to provide to its end users. It is an
abstraction of the design model and identifies major design packages and
functional subsystems, taken mainly from the problem domain.

• Class diagrams, collaboration diagrams and sequence diagrams can be part of the
Logical View. Class diagrams show classes and attributes used in the application.
Collaboration diagrams and sequence diagrams show how these objects in the
system interact. A collaboration diagram is a simple way to show system objects
and the messages and calls that pass between them.

• Use Case Realization View: The use case realization view defines the logical or
information processing behavioral or dynamic view of the system in terms of
Unified Modeling Language (UML) interaction diagram notations. The use cases
are both technical and behavioral in nature.

• The “plus-one” view of the 4+1 view model consists of use cases and scenarios
that further describe or consolidate the other views. Use cases represent the
functional side of the system.

• Implementation View: The implementation view describes the organization of
static software modules (source code, components, and other accompanying
artifacts) in the development environment in terms of packaging and layering and
in terms of configuration management. The modules are organized in a hierarchy
of layers, each layer providing a narrow and well-defined interface to the layers
above it. This view addresses issues of ease of development, management of
software assets, reuse, and commercial-off-the shelf (COTS) components.

System Architecture

Version 1.12 06/06/2014 13

• Process View: The process view addresses specific workflow processes that users
and administrators will perform on a regular basis, and how these processes fit the
existing and proposed architecture. Flowcharts with project-specific notation
represent this view.

• Development View: The development view is used to describe the modules of the
system. Modules are bigger building blocks than classes and objects and vary
according to the development environment. Packages, subsystems, and class
libraries are all considered modules.

System Architecture

Version 1.12 06/06/2014 14

2.2 IT Application Components

Design and Development
Ser # Arch Component Product Name Manufacturer Version

1 IDE Eclipse WTP Eclipse 1.5.2

2 UML Visio Microsoft 2003

3 J2SE Java 2 Standard Edition Sun Microsystems 1.5

4 J2EE Java 2 Enterprise Edition Sun Microsystems 1.5

5 Web Services Axis Apache 2

6 EJB Enterprise Java Beans Sun Microsystems 3.0

7 Build/Compile Apache ANT Apache 1.5.1

8 Continuous
Integration Builder

Continuum
Maven Apache 1.1

2.0
9 Unit Testing Apache Junit Apache 4.0
10 Version Control SubVersion Tigris 1.3
11 Help Tool RoboHelp Macromedia X5

12
Federal
Accessibility
Validation Tool

WEBXACT WatchFire 1.0

13 User Interface Flex3 Adobe

14
Business Process
Modeling
(Workflow)

jBPM JBoss 3.2

Runtime

Ser # Arch Component Product Name Manufacturer Version
15 Application Server JBoss App Server JBoss 4.2
16 Database MySQL MySQL 5.0/5.1
17 OR Mapping Hibernate Hibernate 3.1
18 Registry ebXML ebXML 2.0
19 HTTPServer HttpServer Apache 2.0
20 Reporting JasperReports SourceForge 1.2.2
21 Logging Commons Logging Apache 1.2

22 OS Window 2003 /Linux Microsoft

Note: For runtime, the application will be designed to run on existing J2EE application
servers. Since the application is built on open standards, it can run on any J2EE
compliant application server environment.

J2EE is an enterprise-scale, middleware architecture or platform that links several
resources and applications scattered across the network. It provides a set of application

System Architecture

Version 1.12 06/06/2014 15

components and a runtime environment to construct and host scalable business
applications.

Physically, the J2EE environment can exist on more than one server, and a single
business application can be deployed as a suite of distributed components on one or more
servers across the network.

The following is a list of core concepts that make up the J2EE runtime:

• J2EE n-tier application architecture: the basic infrastructure provided by a J2EE
platform

• J2EE application components: the software elements with which J2EE applications
can be contrived

• J2EE enterprise services: the common facilities available for application components

• J2EE containers: the J2EE runtime environment

It is referred to Detail System Design, Version 1.2, 03/27/2007, Appendix C, IT Bill of
Materials.

System Architecture

Version 1.12 06/06/2014 16

2.3 Architectural Goals

MTS has the following architectural objectives:

• Design all components of the architecture based on proven, engineered techniques.

• Design the architecture for maximum performance, flexibility, adaptability, and
scalability to meet changing business requirements and landscape.

• Design the architecture for scalability and maximum flexibility to accommodate the
future work flows of the MTS project.

• Support standardization of business processes and workflow requirements.

• Use COTS for the core architecture. This includes data acquisition, data
management, workflow management, application management, and data access.

• Comply with OCSE Standards for key architectural principles.

• Ensure that the design is consistent with the overall strategy and goals of OCSE.

• Wherever possible, system should not depend upon specialized skills.

• Minimize client (end-user) machine system requirements through the use of browser-
based solutions.

• Maintain separation of presentation and business logic.

• Meets requirements for reliability, scalability, and maintainability as defined in the
Systems Requirements Document.

• Support the performance requirements for concurrent users, transaction volumes, and
response time.

• Use standards based architecture and avoid the use of proprietary technologies as far
as possible.

• Maintain end-to-end data integrity.

• It must be easy to deploy and maintain in the production environment.

• Use Declarative, Attribute-Oriented programming methods over traditional ones.

• Create Modular, loosely coupled components and layers.

System Architecture

Version 1.12 06/06/2014 17

2.4 Architectural Requirements and Vision

This section discusses the key MTS requirements and other driving forces behind the
existing architecture.

In support of these requirements, this document will define a software architecture to
support the following Business Processes:

Case Intake and Update
Case Initiation and Update is the process of responding to a request for services. This
includes opening and/or reopening a case and assessing and determining the next
appropriate action on a case. It also includes entering data on a case, either at intake or at
any later time in the life of the case.

Locate
Locate is the process of gathering information concerning the physical location and
verified mailing address of a Custodial Party (CP) or Noncustodial Parent (NCP). It also
includes information on the parties’ employer(s), income, or assets. Locate information
is used to support the efficient collection of child support.

Paternity Establishment
Paternity Establishment is the process of obtaining a voluntary acknowledgement of or a
stipulation to paternity. It also includes the legal processes needed to obtain a finding of
paternity by a court.

Order Establishment
Order Establishment is the process of obtaining a voluntary stipulation to child support
by an NCP or conducting the legal processes needed to obtain a child support order from
a court. It also includes the Review and Adjustment process.

Enforcement
Enforcement is any action that may be taken to ensure collection of a child support
obligation. Enforcement includes income withholding, license suspension, liens on
property, and various other tribal, state and federal remedies.

Case Management
Case Management includes numerous actions affecting the status or organization of an
established case. It includes redirecting payments, consolidating a case, transferring a
case, and closing a case. It also includes monitoring responses to actions on a case and
determining the next action that should be taken on a case.

Financial Management
Financial Management includes all the processes involve in collecting and paying out
child support monies. The system must conduct these functions in accordance with
accepted accounting practices. The functions include:

System Architecture

Version 1.12 06/06/2014 18

Obligation Management
Obligation Management is the process of managing owed amounts, primarily
court ordered support (financial and non-financial) owed by the NCP, but also
including any judgments, fees, and other costs related to a child support case.

Collections
Collections is the process of receiving funds from the NCP and other payors, and
all functions related to recording and depositing monies paid by NCPs for child
support obligations.

Distribution
Distribution is the process of applying allocated collections to various debts and
obligations. This capability also determines how collections will be applied to the
obligor’s child support obligations.

Disbursement
Disbursement is the process of handling outbound payments to the appropriate
parties.

System Security and Administration
System Security and Administration provide for maintaining the security and privacy of
personal and financial data.

Security
The Security function will provide for restricting access to the tribal CSE application and
data to only authorized users under controlled circumstances. It will provide for
separation of functions to ensure proper handling of financial accounts.

Administration
The Administration process provides for configuring the system to support a variety of
tribal CSE programs, each with different needs and different governing regulations. The
system software will be extensively configurable at and subsequent to installation.
Configuring and reconfiguring the system should have a minimum impact on program
operations.

Reporting
Reporting includes extracting and abstracting system data to produce reports that ensure
the reliability of the system’s financial processes and the business effectiveness of the
child support program as a whole.

The diagram below depicts the MTS IT Architecture:

System Architecture

Version 1.12 06/06/2014 19

Security &
Administration

Case
Management

Locate

Paternity
Management

Order
Establishment

Enforcement

Financial
Management

Reports

Business
Services

MTCSE

Supervisors/Case
Workers

Security
Administrators

Case
Transfers

Case Data
Export

Outgoing
Interfaces

Reports
Export

Case Data
Import

Online Transaction Processing

Incoming Interfaces

Model Tribal CSE – To Be Architecture

Components

Users

Obligation
Management

Collections

Distribution

Disbursement

Figure 2 – MTS To-Be IT Architecture

System Architecture

Version 1.12 06/06/2014 20

2.5 Solution Architecture

This diagram below depicts the high level MTS solution architecture.

Figure 3 – MTS Solution Architecture

System Architecture

Version 1.12 06/06/2014 21

2.6 Roles and Responsibilities

The following table summarizes the various roles and responsibilities enforced by MTS.

Actors Task-level Goal

Caseworker Case Management, Locate, Paternity, Orders, Enforcement, Read-Only
Financial Management, Interfaces

Supervisor Case Management, Locate, Paternity, Orders, Enforcement, Read-Only
Financial Management, Reports, Interfaces, Supervisor Controls

System
Administrator

Application Administration

Security
Administrator

Security Administration

Financial Worker Read-Only Case Management, Read-Only Locate, Read-Only Paternity,
Read-Only Orders, Read-Only Enforcement, Financial Management,
Reports, Interfaces

Financial Supervisor Read-Only Case Management, Read-Only Locate, Read-Only Paternity,
Read-Only Orders, Read-Only Enforcement, Financial Management,
Reports, Interfaces, Transaction Approvals

Super-User Case Management, Locate, Paternity, Orders, Enforcement, Read-Only
Financial Management, Reports, Interfaces, Supervisor Controls

Responsibilities for various roles are enforced in the application by the following two
mechanisms:

Role-based Access Control: The screens are rendered with different icons/links based on
the role of the user logged in. For instance an “Approve Transaction” icon/link will not
be available to any other role but Financial Supervisor. Similarly security maintenance is
not available to any other role but the Security Administrator.

Rule Checkers: In addition to role-based access, various operations in MTS are restricted
by state based business rules, for instance a Caseworker may be able to view another
user’s case but may not transfer/close case.

System Architecture

Version 1.12 06/06/2014 22

2.7 Roll-back Strategy

Referential Integrity in MTS is maintained by the application and also enforced by the
database server. Given this, MTS is architected to perform a complete rollback upon a
failure for all key transactions. J2EE is the only track that writes directly to the database.
The strategies used in each of these sub-components are discussed below.

2.7.1 J2EE Rollback Strategy

J2EE interacts with and updates transactional database. A Transaction Aware (XA) Data
Source is guaranteed by standards to rollback a transaction completely if a transaction
fails. J2EE code in MTS uses a pure transactional Data Source using an XA based
database driver. Transactions are thus guaranteed to rollback completely if any part of it
fails. MTS uses stateless session EJBs as facades that mark transaction boundaries. Any
number of SQL statements can be executed within the transaction as long as they use
only one Connection. MTS code uses only one connection in all.

System Architecture

Version 1.12 06/06/2014 23

3. Use Case View

3.1 Overview

The use case view describes the organization of static software modules (source code,
components other accompanying artifacts) in the development environment in terms of
packaging and layering and in terms of configuration management. The modules are
organized in a hierarchy of layers, each layer providing a narrow and well-defined
interface to the layers above it. This view addresses issues of ease of development,
management of software assets, reuse, and commercial-off-the shelf (COTS)
components.

3.2 Use Cases

Use Cases will be defined in the MTS System Design Document.

System Architecture

Version 1.12 06/06/2014 24

4. Logical View

4.1 Overview

The logical view primarily supports the functional requirements - the services the system
has been defined to provide to its end users. It is an abstraction of the design model and
identifies major design packages and functional subsystems, taken mainly from the
problem domain

The logical view includes many levels of abstraction, from the large grained components
down to the detailed interaction between objects. Typically, it starts with layering.
Layering in architectures is a common concept.

The Presentation layer displays data and accepts user input via keystrokes and mouse
gestures and manages application-specific navigation issues. The Business layer contains
and enforces business rules, and the Persistence and Data layer manages persistent
storage of data, perhaps to a database.

Business components are the stewards of data and enforce all rules of access and
transformation. If a new application wants to read or update data, it must work through
the business layer, and may not apply SQL against the database itself.

The diagram below illustrates different layers in the architecture for the MTS application.
Every layer will have a façade/controller objects through which other applications can
integrate. Façade objects have the logic or rules to route the requests. Façade objects are
responsible for the initial load of the data. Each of these responsibilities is explained in
more detail as we go through explanation of each of these layers.

System Architecture

Version 1.12 06/06/2014 25

Figure 4 - MTS Layered Architecture

System Architecture

Version 1.12 06/06/2014 26

4.2 Layered Overview

4.2.1 Presentation Tier

Presentation Layer
MTS application will use the Presentation layer as part of the JBoss Application Server.
This layer will be built using Flex2 framework.

Flex encompasses both a standards-based programming model that will be familiar to
professional developers and a set of products designed to enable efficient delivery of
high-performance RIAs. RIAs combine the responsiveness and richness of desktop
software with the broad reach of web applications to deliver a more effective user
experience. Flex applications take advantage of Adobe® Flash® Player, enabling
developers to seamlessly extend the capabilities of the browser and deliver richer, more
responsive client-side applications as well as a more robust integration with server-side
functionality and service-oriented architectures.

Figure 5 – Client Interaction

System Architecture

Version 1.12 06/06/2014 27

Client data collecting: Collecting user input is one of the most common uses for web
applications. Flex supports forms, and all common form elements, to let you create rich
and dynamic user experiences. Flex forms include data validation mechanisms and the
ability to identify required input fields.

Client-side processing of user input, including filtering and data validation: Flex data
management, which includes data models, data validators, data binding, and data
services, lets you separate data representation from the way that a user views it.
Typically, this design pattern is called Model-View-Controller (MVC). Flex also
provides a powerful way to validate data and pass data between user-interface controls
and external data sources with little or no server interaction.

Security: One of the most tedious and difficult aspects of application development is
security, specifically authentication and authorization. MTS system needs to confirm that
a user is whom he/she says and then has appropriate authorized access to the necessary
resources.

UI Standards: The user interface (UI) will be built based on state and federal
Accessibility Standards. Section 508 requires that when federal agencies develop,
procure, maintain, or use electronic and information technology, federal employees with
disabilities have access to and use of information and data that is comparable to the
access and use by federal employees who are not individuals with disabilities, unless an
undue burden would be imposed on the agency. Section 508 also requires that
individuals with disabilities, who are members of the public seeking information or
services from a federal agency, have access to and use of information and data that is
comparable to that provided to the public who are not individuals with disabilities, unless
an undue burden would be imposed on the agency.

http://www.section508.gov/

The presentation Layer consists of the UI components. It is responsible for the
presentation of the data, receiving user events and controlling the user interface.

Caching: In order to meet the 2 seconds performance requirement, frequently used data
will be cached in the presentation layer and later retrieved from the cache when the next
request comes in. The action classes do data caching in the presentation layer using the
http session object.

Presentation Layer can be primarily divided into presentation, controller or data model,
internationalization and personalization.

Presentation: Presentation primarily contains the UI pages and the code components that
help rendering these UI pages. The following are the items that would be present in the
presentation layer:

When building UI components using Flex, you describe its user interface using
components called containers and controls. A container is a rectangular region of the
screen that contains controls and other containers. Examples of containers are a Form
container used for data entry, a Box, and a Grid. A control is a form element, such as a
Button or Text Input field.

http://www.section508.gov/

System Architecture

Version 1.12 06/06/2014 28

Containers and controls define the application’s user interface. In an MVC design
pattern, those pieces of the application model represent the view. The model is
represented by the data model. Flex data models let you separate your application’s data
and business logic from the user interface. You define your data models using MXML or
ActionScript as part of a Flex application.

Data binding is the process of tying the data in one object to another object. The data
model supports bidirectional data binding for writing data from Flex controls to the data
model, or for reading data into controls from the model. You can also bind server data to
a data model or directly to Flex controls.

Flex2 Programming Model
Flex contains the Flex class library, and the MXML and ActionScript programming
languages. The following diagram represents the Flex programming model:

Figure 6 – Flex2 Programming Model

Flex applications using a combination of MXML and ActionScript. The MXML and
ActionScript programming languages both provide the ability to access the Flex class
library. Use MXML to declaratively define the application user interface elements and
use ActionScript to define client logic and procedural control. The Flex class library
contains Flex components, managers, and behaviors. With the Flex component-based
development model, developers can incorporate pre-built components, create new
components, or combine pre-built components into composite components.

Flex is implemented as an ActionScript class library. That class library contains
components (containers and controls), manager classes, data-service classes, and classes
for all other features. Applications are developed using the MXML and ActionScript
languages with the class library. MXML tags correspond to ActionScript classes or
properties of classes. Flex parses MXML tags and compiles a SWF file that contains the
corresponding ActionScript objects. When a control using an MXML tag is declared, an
instance object of that class is created.

An MXML tag that corresponds to an ActionScript class uses the same naming
conventions as the ActionScript class. Class names begin with an uppercase letter, and
uppercase letters separate the words in class names. Every MXML tag attribute
corresponds to a property of the ActionScript object, a style applied to the object, or an
event listener for the object.

System Architecture

Version 1.12 06/06/2014 29

The Flex application must be precompiled and deployed using an html server. The
processing language allows the application to dynamically create a wrapper for your Flex
application. The wrappers are typical JSP or HTML pages.

Figure 7 – Typical Screen Rendering Using Flex

System Architecture

Version 1.12 06/06/2014 30

4.2.2 Middle/Application Tier

The business layer implements the business logic and rules for the interactive portion of
MTS. This layer implements the core components of MTS: Security Management, Case
Management, Locate Services, Paternity and Order Management, Financial Services and
Enforcement. This layer also implements transaction handling for MTS screen requests.

Browser

Business
Delegate

Web Container

Session
Facade

DAO

JNDI

EJB Container

MVC

M
id

dl
e

T
ie

r

Figure 8 - Middle Tier

4.2.2.1 Business Process Layer

The middle tier is built on the functionality of Flex 3 SDK by adding Flex Data Services.
Flex Data Services adds enterprise messaging support and a greatly enhanced data
services architecture to the Flex 3 SDK. This is created by using a deployment method
with Flex Data Services as a standard web application on a J2EE application server or
servlet container. Flex Data Services simplifies the programming model for interacting
with data on the server and includes the following features:

A high-level programming model for synchronizing data changes between client and
server or between multiple clients:

• Integrated services for using publish-and-subscribe messaging.

• Automated server data push and real-time data streaming.

• An open adapter architecture for integrating with JMS, Hibernate, EJB, and other data
persistence mechanisms.

• Authentication of client access to server resources.

• Access to RemoteObjects by using the AMF protocol.

Application clients need access to business objects to fulfill their responsibilities and to
meet user requirements. Clients can directly interact with these business objects because
they expose their interfaces. When you expose business objects to the client, the client
must understand and be responsible for the business data object relationships, and must
be able to handle business process flow.

System Architecture

Version 1.12 06/06/2014 31

However, direct interaction between the client and the business objects leads to tight
coupling between the two, and such tight coupling makes the client directly dependent on
the implementation of the business objects. Direct dependence means that the client must
represent and implement the complex interactions regarding business object lookups and
creations, and must manage the relationships between the participating business objects
as well as understand the responsibility of transaction demarcation.

As client requirements increase, the complexity of interaction between various business
objects increases. The client grows larger and more complex to fulfill these
requirements. The client becomes very susceptible to changes in the business object
layer; in addition, the client is unnecessarily exposed to the underlying complexity of the
system.

The Business Process Layer will have the flow and logic pertaining to a particular
business domain. The presentation tier typically invokes the business services in the
business process layer through a façade which decouples the presentation and business
tiers.

This layer implements the business logic of the applications. There are several sub-layers
within the business tier:

Control Layer – The interface layer between presentation tier and application tier.

Transaction Layer – Usually implements business processes that may involve
many business objects. In J2EE architecture, session beans are commonly used
for implementing the transaction layer. Transaction Layer and Business Object
Layer are not constrained by the programming languages for the presentation and
the database is used for persistence.

Business Object Layer – Consists of objects that represent business entities that
are independent of database used for data persistence.

Common patterns that will be used to implement this layer and its sub-layers include:

Business Interface – Provides a business-specific interface for interacting with
session beans. It defines the business logic available for use.

Business Delegate – Reduces coupling between Presentation and Business tiers.
It acts as the business client to business layer. Provides access to that logic
defined in the business interface without causing a dependency on its
implementation technology.

Session Façade – Coordinates operations between multiple business objects in a
workflow.

Service Locator – Simplifies and unifies access to enterprise business services,
including JNDI-administered service components such as EJBs and JMS queues
and topics

Caching
MTS will implement the data cache using JBoss Cache. JBoss Cache is a product
designed to cache frequently accessed Java objects in order to dramatically improve the

System Architecture

Version 1.12 06/06/2014 32

performance of enterprise applications. By eliminating unnecessary database access,
JBoss Cache decreases network traffic and increases the scalability of applications.

Reusable Components
Logging Services – Apache Log4j will be used to render logging services.
Logging service provides the application with a simple to use, yet flexible and
robust mechanism for logging output to multiple destinations. Property driven
parameters allow the application to easily modify the semantics of the logging
without changing any application code.

Exception Handling Services – A Declarative exception handling model will be
used, making it possible to modify the exception handling logic without
modifying the code.

Security Services – The J2EE Security Framework provides end-to-end
application security, covering J2EE and non-J2EE components of an application
hosted on compliant J2EE Server.

Transaction Management Services – CMT (Container Managed Transaction) is a
form of declarative transaction management (as distinguished from programmatic
transaction management) that removes most-if not all-need to write code for
transactions. The JBossTX architecture allows for any Java Transaction API
(JTA) transaction manager implementation to be used. JBossTX includes a fast
in-VM implementation of a JTA compatible transaction manager that is used as
the default transaction manager.

4.2.3 Persistence Tier

The Data Access Object (DAO) layer is an essential part of good application architecture.
Business applications almost always need access to data from relational or object
databases and the Java platform offers many techniques for accessing this data. The
oldest and most mature technique is to use the Java Database Connectivity (JDBC) API,
which provides the capability to execute SQL queries against a database and then fetch
the results, one column at a time. Although this API provides everything a developer
needs to access data and to persist application state, it is a cumbersome API to develop
against - which makes a code generator particularly useful.

Hibernate is a powerful, high performance object/relational persistence and query service.
Hibernate lets the developer create persistent classes following object-oriented idiom -
including association, inheritance, polymorphism, composition, and collections.
Hibernate allows you to express queries in its own portable SQL extension (HQL), as
well as in native SQL, or with an object-oriented Criteria and Example API.

Common patterns that will be used to implement this layer include:

Data Access Object (DAO) – Data Access Objects abstract the underlying data
access implementation for the Business Object to enable transparent access to the
data source.

System Architecture

Version 1.12 06/06/2014 33

Transfer Object (Value Object) – This transfers business data between tiers. It
represents an object view of the individual records returned by a Data Access
Object.

Value List Handler – Efficiently iterates a virtual list of Transfer Objects.

4.2.4 Data Tier

MTS database and data models are designed to serve multiple requirements including;

• Capturing online transaction – typically changes to case, financial or security related
data

• Capturing history for changes

• Capturing change transactions for audit trail

• Importing Case Data

• Exporting Case Data

• Generating Reports
The main database schema for MTS;

• Contains all Work-In-Progress data (all Case, History, and Financial being actively
used)

• Captures on-line activity

• Database Server : MySQL

System Architecture

Version 1.12 06/06/2014 34

5. Process View
Process view to be defined during detailed design

Sample process flow for Case Intake:

Figure 9 – Case Intake Process Flow

System Architecture

Version 1.12 06/06/2014 35

6. Deployment View

6.1 Overview

The deployment view shows how the various executables and components are mapped to
the underlying OS and hardware platforms or computing nodes. It addresses issues such
as system hardware and software deployment and installation. This view uses a project-
specific deployment diagram.

Figure 11 – Development Overview

System Architecture

Version 1.12 06/06/2014 36

6.2 Deployment View

Figures 11-15 show the deployment view of MTS for different deployments that include:

• Development

• UAT/Pre-Prod

• Production Configuration

Summary

• MTS uses a zero-footprint browser based client that requires no additional installation
at the client machine.

• MTS is an internet application and is available only from within the GM network.

• Application components can be configured to use a cluster to provide failover.

• JBoss Application Server can be configured to be hosted on a single box as a vertical
cluster or hosted on multiple boxes as horizontal clusters.

• MySQL is the transactional database.

• Users log in to MTS application using their username and password. The username
and password are authenticated against authentication tables. Authentication and
authorization are controlled by ACEGI framework.

System Architecture

Version 1.12 06/06/2014 37

Development Environment

Figure 11 – Development Environment

UAT/Pre-production Environment

Figure 12 – UAT/Pre-Prod Runtime Environment

System Architecture

Version 1.12 06/06/2014 38

Production Configuration

Vertical Cluster Configuration – Single Server

Figure 13 – Vertical Cluster Single Server

System Architecture

Version 1.12 06/06/2014 39

Vertical Cluster Configuration – Multiple Servers

Figure 14 – Vertical Cluster Multiple Servers

System Architecture

Version 1.12 06/06/2014 40

Horizontal Cluster Configuration – Multiple Servers

Figure 15 – Horizontal Cluster Environment

The MTS application infrastructure tiers supported will be highly available. This
includes the Web Servers and the Application Servers.

System Architecture

Version 1.12 06/06/2014 41

7. Implementation View

7.1 Overview

The implementation view describes the organization of static software modules (source
code, components other accompanying artifacts) in the development environment in
terms of packaging and layering and in terms of configuration management. The
modules are organized in a hierarchy of layers, each layer providing a narrow and well-
defined interface to the layers above it. This view addresses issues of ease of
development, management of software assets, reuse, and commercial-off-the shelf
(COTS) components.

System Architecture

Version 1.12 06/06/2014 42

7.2 Architecturally Significant Design Packages or COTS Module

Significant Component Package/Service
or COTS Module Description

org.dhhs.mtcse.beans Defines way of obtaining beans by name from a
central configuration repository. Removes the
need for the java objects to read configuration
properties or instantiate objects.

org.dhhs.mtcse.context Provides namespace for the Java Beans that
compose an application or subsystem, and the
ability to share working objects at runtime

org.dhhs.mtcse.ebj.support Simplifies EJB code by implementing lifecycle
methods, providing consistent logging solution,
removing the need to use JNDI to look up the
environment variable

org.dhhs.mtcse.ejb.access Decouples calling code from EJB implementation
by obtaining references through a common
factory. This avoids duplication of JNDI lookup
code, and enables caching which boosts
performance

org.dhhs.mtcse.jdbc.core Uses callback interfaces to enable JDBC workflow
and error handling to be managed by the
framework

org.dhhs.mtcse.dao Defines a generic data-access exception
hierarchy, enabling code using DAO’s to handle
exceptions in a database agnostic way

org.dhhs.mtcse.jdbc.object Offers a higher level of abstraction in which
RDBMS operations are modeled as reusable
objects

org.dhhs.mtcse.logging Provides an generic API wrapping Java and
Log4J logging

org.dhhs.mtcse.beans.BeanWrapper Low-level Java Bean manipulations interface,
concealing the use of the reflection to manipulate
properties and invoke methods

org.dhhs.mtcse.beans.factory.BeanFactory Central interface defining a registry of application
objects, that can be uses as an alternative to the
Singleton design patterns

org.dhhs.mtcse.beans.factory.IntializingBean Application specific classes may implement this to
receive a callback when a bean properties have
been set, enabling them to complete their

System Architecture

Version 1.12 06/06/2014 43

Significant Component Package/Service
or COTS Module Description

initialization

org.dhhs.mtcse.bs.service.Administration This package provides services for creating and
managing users and other reference data. It
implements the business processes and rules.

org.dhhs.mtcse.bs.service.Participant This package provides services for managing
participant data. It implements the business
processes and rules.

org.dhhs.mtcse.bs.exceptions This package defines the base
ApplicationException and FatalException classes
from which all other checked and unchecked
exceptions are derived respectively.

org.dhhs.mtcse.util Helper classes for Logging and Exception
Handling

System Architecture

Version 1.12 06/06/2014 44

8. Data View

8.1 Overview

See MTS Data Model

System Architecture

Version 1.12 06/06/2014 45

8.2 Entity Relationship Diagram

See MTS Data Model

System Architecture

Version 1.12 06/06/2014 46

9. Size and Performance
Updates to size and performance will be performed during the detailed systems design.

Within the J2EE framework, clusters provide mission-critical services to ensure minimal
downtime and maximum scalability. A cluster is a group of application servers that
transparently run the J2EE application as if it were a single entity. To scale the
application, the system will include additional physical machines within the cluster. To
minimize downtime, every component of the cluster is redundant.

J2EE application server architecture defines a cluster as a group of machines working
together to transparently provide enterprise services (support for JNDI, EJB, JSP,
HttpSession and component failover, and so on). One way of accomplishing this is to put
a dispatcher in front of a group of independent machines, none of which has knowledge
of the other machines in the cluster. In this scheme, the dispatcher receives an initial
request from a user and replies with an HTTP redirect header to pin the client to a
particular member server of the cluster. At the other end of the spectrum some
application servers implement a federation of tightly integrated machines, with each
machine totally aware of the other machines around it along with the objects on those
machines.

In addition to machines, clusters can comprise redundant and failover-capable:

• Load balancers: Single points of entry into the cluster and traffic directors to
individual Web or application servers

• Web servers

• Gateway routers: Exit points out of an internal network

• Multilayer switches: Packet and frame filters to ensure that each machine in the
cluster receives only information pertinent to that machine

• Firewalls: Cluster protectors from hackers by filtering port-level access to the cluster
and internal network

• SAN (Storage Area Networking) switches: Connect the application servers, Web
servers, and databases to a backend storage medium; manage which physical disk to
write data to; and failover

• Databases
Regardless of how they are implemented, all clusters provide two main benefits:
scalability and high availability (HA).

System Architecture

Version 1.12 06/06/2014 47

10. Quality
Developers must utilize an Integrated Development Environments (IDE) to identify
whether they are following proper coding conventions, using known design patterns,
complying with industry standards such as Web services, and ensuring that their code
adheres to its contract and performs per the requirements. In addition, when developers
are not given the environments necessary to achieve continuous builds and automated
testing, an IDE's capabilities become even more important to ensuring the system's
quality.

Eclipse IDE, which provides built-in capabilities that, when used with several plug-ins,
can aid in increasing the quality of both the code base and the system. Eclipse is an open,
extensible IDE built for anything and nothing in particular. Eclipse’s Java development
environment is open source, free, and fully customizable. Eclipse both enables and
promotes the addition of new capabilities via open source and commercially available
custom-built plug-ins. By utilizing Eclipse, along with a key set of plug-ins it is possible
for a developer, and a team, to measure the quality of any J2EE- or Java-based system.

Key areas in the system that warrants measurements are system's maintainability,
reliability, and performance. While this list is obviously not all-inclusive, these three
items are highly suited as the basic building blocks for ensuring the quality of a system.

Maintainability involves the complexity associated with understanding the code or
modifying the code, whether it is a bug fix or an enhancement. Well-documented code
that follows known coding standards and industry design standards is easier to maintain
than code with sparse documentation that doesn't follow any known standard
development practices. Highly maintainable code allows changes to be introduced more
quickly, thereby permitting the business to respond more rapidly to new requirements or
change requests, and ultimately reducing the overall cost of both new features and
ongoing maintenance.

Reliability indicates whether a method adheres to its contract and can be executed
successfully. Unit tests are used to exercise a method's contract, thus verifying the
reliability of the code segment. The quality of the unit tests, in turn, is verified via code
coverage analysis. Many approaches are available for measuring code coverage,
including, but not limited to, statement, and decision, condition, path, and call analysis.

Method reliability within a system is extremely important as it represents, to some extent,
a system's stability. Other problems, such as performance or scalability issues, could
arise, which may not be as readily found even with extensive unit testing and coverage
analysis. Thus, unit testing and coverage analysis are by no means a be-all, end-all
solution to ensuring system stability; however, the ability to reliably execute methods
consistently represents a good measuring stick of the system's reliability.

Performance is typically measured on a per-unit-of-time basis. A system's ability to
process numerous requests, to the amount of information sent over the wire, to the
response time of a particular system call, are all performance criteria measured based on
a unit of time. It is important to know, to some extent, how the system will perform. To
ensure this understanding, one could measure all major service methods or potential

System Architecture

Version 1.12 06/06/2014 48

problem areas with expected high usages, long call stacks, or those pieces that represent
the most common paths through the core architecture. Each approach provides a varying
level of comfort with regard to performance. For large-scale systems, performance
should be continually maintained and monitored during development to identify snags
early and avoid unforeseen problems in production environments.

System Architecture

Version 1.12 06/06/2014 49

11. Model System Architectural Design and Prototype

11.1 Overview

The MTS System will be designed and prototyped with the architecture presented in this
document. The prototype will include a complete authentication and authorization along
with the Case Intake process.

11.2 Prototype

The prototype for this application will demonstrate the viability of standards based
solution to allow CSE workers to use the MTS system. The prototype will:

• Finalize the documentation process for the detailed systems design

• Use J2EE (EJB, JSP, Servlets, JSTL) and other standards based technology such as
XML, WSDL and SOAP

• Demonstrate role-based authentication function

• Web Services technology will be used to model interaction between participating
systems

• The prototype will provide a full featured case intake process for CSE caseworkers

• SSL will be used to encrypt identifiable data being sent across the wire

Open source technologies will be leveraged for the implementation of the prototype.

System Architecture

Version 1.12 06/06/2014 50

12. Appendix A – Acronyms and Definitions

This section is intended to provide definitions for abbreviated terms and acronyms used
throughout this document.

12.1 Acronyms

Acronym Definition
ACF Administration for Children and Families
DHHS Department of Health and Human Services
GMT Greenwich Mean Time
HA High Availability
IP Internet Protocol

PDF Portable Document Format
UI User Interface

12.2 Definitions

Term Definition

Artifacts Other associated java files and/or components that are assembled
into the software prior to deployment.

Extensible Markup Language
(XML)

XML is a specification developed by the W3C. XML is a pared-
down version of SGML, designed especially for Web documents.
It allows designers to create their own customized tags, enabling
the definition, transmission, validation, and interpretation of data
between applications and between organizations.

High availability High Availability also known as HA can be summed up in one
word: redundancy. A cluster uses many machines to service
requests. Therefore, if any machine in a cluster fails, another
machine can transparently take over.

Hypertext Markup Language
(HTML)

Hypertext Markup Language is the authoring software language
used on the Internet's World Wide Web. HTML is used for
creating World Wide Web pages.

Hypertext Transfer Protocol
(HTTP)

The Hypertext Transfer Protocol is the set of rules for exchanging
files (text, graphic images, sound, video, and other multimedia
files) on the World Wide Web.

Hypertext Transfer Protocol
Over Secured Socket Layer
(HTTPS)

A web protocol, developed by Netscape, which is built into
browsers. HTTPS encrypts and decrypts user page requests as
well as the pages that are returned by the web server. HTTPS
uses Secure Socket Layer (SSL) as a sub-layer under its regular
HTTP application layering. (HTTPS uses port 443 instead of
HTTP port 80 in its interactions with the lower layer, TCP/IP).

System Architecture

Version 1.12 06/06/2014 51

Term Definition

Internet The internet is the worldwide, publicly accessible system of
interconnected computer networks the transmit data using the
standard Internet Protocol (IP).

Intranet An Intranet is a private computer network that uses the Internet
Protocols to share data.

JAVA 2 Platform, Enterprise
Edition (J2EE)

J2EE (Java 2 Platform, Enterprise Edition) technology and its
component-based model simplify enterprise development and
deployment. The J2EE platform manages the infrastructure and
supports the Web services to enable development of secure,
robust, and interoperable business applications.

JAVA Runtime Environment
(JRE)

A subset of the Java Development Kit (JDK) that contains the core
executables and files that constitutes the standard Java platform.

Local Area Network (LAN) A local area network is a computer network limited to the
immediate area, usually the same building or floor of a building.
LANs are capable of transmitting data at very fast rates. There is
no limit on the number of computers that can be attached to a
single LAN.

Open Source Open source describes practices in production and development
that promote access to the end product’s sources.

Scalability Scalability refers to an application's ability to support increasing
numbers of users. Clusters allow you to provide extra capacity by
adding extra servers, thus ensuring scalability.

Secure Socket Layer A security protocol methodology designed to create a secure
connection to the server for the transmission of confidential data
through the Internet. SSL uses public key encryption, one of the
industry's strongest encryption methods, to protect data as it
travels over the Internet. Originally created by Netscape.

Simple Object Access Protocol
(SOAP)

A lightweight protocol for exchange of information in a
decentralized, distributed environment. It is an XML-based
protocol that consists of three parts: an envelope that defines a
framework for describing what is in a message and how to process
it, a set of encoding rules for expressing instances of application-
defined data types, and a convention for representing remote
procedure calls and responses.

Transmission Control
Protocol/Internet Protocol
(TCP/IP)

A protocol that is used to facilitate communication and transport of
data between networks.

UI The user interface of a program is the part of it with which a user
(person) interacts, such as a menu, button or toolbar.

Uniform Resource Locator
(URL)

Global address of documents and other resources on the World
Wide Web.

System Architecture

Version 1.12 06/06/2014 52

13. Appendix B – References
Item Title Author Location

4+1 views The 4+1 view
model of
architecture

Rational

IEEE

http://www.rational.com/products/whitepapers/
461.jsp

http://computer.org/software/so1995/s6042ab
s.htm

Enterprise
Application
Architecture

Enterprise
Integration Patterns
: Designing,
Building, and
Deploying
Messaging
Solutions

Gregor
Hohpe

Web Services
Pattern

Web Services
Pattern

 http://www.w3.org/2002/ws/

J2EE Best
Practices

J2EE Best
Practices: Java
Design Patterns,
Automation, and
Performance (Wiley
Application
Development
Series)
(Paperback)

Darren
Broemmer

J2EE Design
Patterns

A pattern describes
a proven solution to
a recurring design
problem, placing
particular emphasis
on the context and
forces surrounding
the problem, and
the consequences
and impact of the
solution.

 http://java.sun.com/blueprints/patterns/catalog
.html

http://www.rational.com/products/whitepapers/461.jsp
http://www.rational.com/products/whitepapers/461.jsp
http://computer.org/software/so1995/s6042abs.htm
http://computer.org/software/so1995/s6042abs.htm

System Architecture

Version 1.12 06/06/2014 53

14. Appendix C – Notations
The architectural notations used in this document are of the following types: UML, Data
Flow Diagrams, and Work Flow Diagrams. The high-level use cases are represented
textually. The Data Flows, Work Flows, and Cross Functional Matrices have been
created and are being maintained in Microsoft Visio, using the stencils associated with
the document types. All other architectural diagrams are done using free-form graphics
with notations that are included in the software packages used to create the diagrams are
generated and supported in Microsoft Visio and Microsoft PowerPoint.

	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.2.1 Included Topics

	1.3 Acronyms and Definitions
	1.4 References
	1.5 Notations
	1.6 Overview

	2. Architectural Representation
	2.1 Overview
	2.2 IT Application Components
	2.3 Architectural Goals
	2.4 Architectural Requirements and Vision
	2.5 Solution Architecture
	2.6 Roles and Responsibilities
	2.7 Roll-back Strategy

	3. Use Case View
	3.1 Overview
	3.2 Use Cases

	4. Logical View
	4.1 Overview
	4.2 Layered Overview
	4.2.1 Presentation Tier
	4.2.2 Middle/Application Tier
	4.2.2.1 Business Process Layer

	4.2.3 Persistence Tier
	4.2.4 Data Tier

	5. Process View
	6. Deployment View
	6.1 Overview
	6.2 Deployment View

	7. Implementation View
	7.1 Overview
	7.2 Architecturally Significant Design Packages or COTS Module

	8. Data View
	8.1 Overview
	8.2 Entity Relationship Diagram

	9. Size and Performance
	10. Quality
	11. Model System Architectural Design and Prototype
	11.1 Overview
	11.2 Prototype

	12. Appendix A – Acronyms and Definitions
	12.1 Acronyms
	12.2 Definitions

	13. Appendix B – References
	14. Appendix C – Notations

